Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 980-991.doi: 10.3864/j.issn.0578-1752.2021.05.010
• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles Next Articles
Xu LI(),WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN(
)
[1] |
VITOUSEK P M, MENGE D N, REED S C, CLEVELAND C C. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013,368(1621):20130119.
doi: 10.1098/rstb.2013.0119 |
[2] |
CLEVELAND C C, TOWNSEND A R, SCHIMEL D S, FISHER H, HOWARTH R W, HEDIN L O, PERAKIS S S, LATTY E F, VON FISCHER J C, ELSEROAD A, WASSON M F, Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles, 1999,13(2):623-645.
doi: 10.1029/1999GB900014 |
[3] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z, FRENEY J R, MARTINELLI L A, SEITZINGER S P, SUTTON M A. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008,320(5878):889-892.
doi: 10.1126/science.1136674 pmid: 18487183 |
[4] |
HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008,311(1/2):1-18.
doi: 10.1007/s11104-008-9668-3 |
[5] |
LADHA J K, TIROL-PADRE A, REDDY C K, CASSMAN K G, VERMA S, POWLSON D S, VAN KESSEL C, DE B R D, CHAKRABORTY D, PATHAK H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Scientific Reports, 2016,6(1):1-9.
doi: 10.1038/s41598-016-0001-8 pmid: 28442746 |
[6] |
ROPER M M, GUPTA V V S R. Enhancing non-symbiotic N2 fixation in agriculture. The Open Agriculture Journal, 2016,10(1):7-27.
doi: 10.2174/1874331501610010007 |
[7] |
GOOD A G, BEATTY P H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biology, 2011,9(8):e1001124.
doi: 10.1371/journal.pbio.1001124 pmid: 21857803 |
[8] |
ZENG J, LIU X J, SONG L, LIN X G, ZHANG H Y, SHEN C C, CHU H Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology & Biochemistry, 2016,92:41-49.
doi: 10.1016/j.soilbio.2015.09.018 |
[9] |
BEATTY P H, GOOD A G. Plant science. Future prospects for cereals that fix nitrogen. Science, 2011,333(6041):416-417.
doi: 10.1126/science.1209090 pmid: 21778391 |
[10] | 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响. 土壤学报, 2014,51(1):150-157. |
YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature, root micro-organisms and enzyme activities. Acta Pedologica Sinica, 2014,51(1):150-157. (in Chinese) | |
[11] |
GUPTA V V S R, ROPER M M, ROGET D K. Potential for non-symbiotic N2-fixation in different agroecological zones of southern Australia. Soil Research, 2006,44(4):343-354.
doi: 10.1071/SR05122 |
[12] | 赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响. 应用生态学报, 2015,26(6):1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, MU X Y, LI C H. Effects of tillage and straw returning on microorganism quantity,enzyme activities in soils and grain yield. Chinese Journal of Applied Ecology, 2015,26(6):1785-1792. (in Chinese) | |
[13] | 潘剑玲, 代万安, 尚占环, 郭瑞英. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21(5):526-535. |
PAN J L, DAI W A, SHANG Z H, GUO R Y. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chinese Journal of Eco-Agriculture, 2013,21(5):526-535. (in Chinese) | |
[14] |
NELSON D R, MELE P M. The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Soil Research, 2006,44(4):319-329.
doi: 10.1071/SR06022 |
[15] |
HSU S F, BUCKLEY D H. Evidence for the functional significance of diazotroph community structure in soil. The ISME Journal, 2009,3(1):124-136.
doi: 10.1038/ismej.2008.82 pmid: 18769458 |
[16] |
TENG Q, SUN B, FU X, LI S, CUI Z, CAO H. Analysis of nifH gene diversity in red soil amended with manure in Jiangxi, South China. The Journal of Microbiology, 2009,47(2):135-141.
pmid: 19412595 |
[17] |
LINDSAY E A, COLLOFF M J, GIBB N L, WAKELIN S A. The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied and Environmental Microbiology, 2010,76(16):5547-5555.
doi: 10.1128/AEM.03054-09 pmid: 20601513 |
[18] |
REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology, Evolution, and Systematics, 2011,42(1):489-512.
doi: 10.1146/annurev-ecolsys-102710-145034 |
[19] |
REED S C, TOWNSEND A R, CLEVELAND C C, NEMERGUT D R. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia, 2010,164(2):521-531.
pmid: 20454976 |
[20] |
WAKELIN S A, GUPTA V V S R, FORRESTER S T. Regional and local factors affecting diversity, abundance and activity of free-living, N2-fixing bacteria in Australian agricultural soils. Pedobiologia, 2010,53(6):391-399.
doi: 10.1016/j.pedobi.2010.08.001 |
[21] |
ROPER M. Field measurements of nitrogenase activity in soils amended with wheat straw. Australian Journal of Agricultural Research, 1983,34(6):725-739.
doi: 10.1071/AR9830725 |
[22] |
PÉREZ C A, CARMONA M R, ARMESTO J J. Non-symbiotic nitrogen fixation during leaf litter decomposition in an old-growth temperate rain forest of Chiloé Island, southern Chile: Effects of singleversusmixed species litter. Austral Ecology, 2010,35(2):148-156.
doi: 10.1111/aec.2010.35.issue-2 |
[23] |
CUSACK D F, SILVER W, MCDOWELL W H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 2009,12(8):1299-1315.
doi: 10.1007/s10021-009-9290-0 |
[24] |
WAKELIN S A, COLLOFF M J, HARVEY P R, MARSCHNER P, GREGG A L, ROGERS S L. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiology Ecology, 2007,59(3):661-670.
doi: 10.1111/j.1574-6941.2006.00235.x pmid: 17116166 |
[25] |
FORBES M, BROOS K, BALDOCK J, GREGG A, WAKELIN S. Environmental and edaphic drivers of bacterial communities involved in soil N-cycling. Soil Research, 2009,47(4):380-388.
doi: 10.1071/SR08126 |
[26] |
POLY F, RANJARD L, NAZARET S, GOURBIERE F, MONROZIER L J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Applied and Environmental Microbiology, 2001,67(5):2255-2262.
pmid: 11319109 |
[27] | TANAKA H, KYAW K M, TOYOTA K, MOTOBAYASHI T. Influence of application of rice straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial biomass N, and mineral N in a model paddy microcosm. Biology and Fertility of Soils, 2005,42(6):501-505. |
[28] | ROPER M M, SMITH N A. Straw decomposition and nitrogenase activity (C2H2 reduction) by free-living microorganisms from soil: Effects of pH and clay content. Soil Biology and Biochemistry, 1991,23(3):275-283. |
[29] | KEELING A A, COOK J A, WILCOX A. Effects of carbohydrate application on diazotroph populations and nitrogen availability in grass swards established in garden waste compost. Bioresource Technology, 1998,66(2):89-97. |
[30] | ROPER M M, TURPIN J E, THOMPSON J P. Nitrogenase activity (C2H2 reduction) by free-living bacteria in soil in a long-term tillage and stubble management experiment on a vertisol. Soil Biology and Biochemistry, 1994,26(8):1087-1091. |
[31] | UNKOVICH M, BALDOCK J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biology and Biochemistry, 2008,40(12):2915-2921. |
[32] | KEUTER A, VELDKAMP E, CORRE M D. Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices. Soil Biology and Biochemistry, 2014,70:38-46. |
[33] | CHALK P M, HE J Z, PEOPLES M B, CHEN D. 15N2 as a tracer of biological N2 fixation: A 75-year retrospective. Soil Biology and Biochemistry, 2017,106:36-50. |
[34] |
GABY J C, BUCKLEY D H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE, 2012,7(7):e42149.
doi: 10.1371/journal.pone.0042149 pmid: 22848735 |
[35] | FAN F, YIN C, TANG Y, LI Z, SONG A, WAKELIN S A, ZOU J, LIANG Y. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA- SIP. Soil Biology and Biochemistry, 2014,70:12-21. |
[36] |
DABUNDO R, LEHMANN M F, TREIBERGS L, TOBIAS C R, ALTABET M A, MOISANDER P H, GRANGER J. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE, 2014,9(10):e110335.
doi: 10.1371/journal.pone.0110335 pmid: 25329300 |
[37] | OHYAMA T, KUMAZAWA K. A simple method for the preparation, purification and storage of 15N2 gas for biological nitrogen fixation studies. Soil Science and Plant Nutrition, 1981,27(2):263-265. |
[38] |
GABY J C, RISHISHWAR L, VALDERRAMA-AGUIRRE L C, GREEN S J, VALDERRAMA-AGUIRRE A, JORDAN I K, KOSTKA J E. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Applied and Environmental Microbiology, 2018,84(4):e01512-17.
doi: 10.1128/AEM.01512-17 pmid: 29180374 |
[39] |
HERBOLD C W, PELIKAN C, KUZYK O, HAUSMANN B, ANGEL R, BERRY D, LOY A. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Frontiers in Microbiology, 2015,6:731.
doi: 10.3389/fmicb.2015.00731 pmid: 26236305 |
[40] |
VAITOMAA J, RANTALA A, HALINEN K, ROUHIAINEN L, TALLBERG P, MOKELKE L, SIVONEN K. Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes. Applied and Environmental Microbiology, 2003,69(12):7289-7297.
doi: 10.1128/aem.69.12.7289-7297.2003 pmid: 14660378 |
[41] | 苟永刚, 余玲玲, 许霞, 王建武. DNA-SIP鉴定甘蔗//大豆间作土壤15N-DNA富集位置的氮循环功能基因qPCR方法. 农业环境科学学报, 2019,38(1):140-147. |
GOU Y G, XU L L, XU X, WANG J W. Identification of 15N-DNA enrichment sites in DNA-SIP to reveal functional genes by qPCR from sugarcanesoybean intercropping soil. Journal of Agro-Environment Science, 2019,38(1):140-147. (in Chinese) | |
[42] |
GABY J C, BUCKLEY D H. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database, 2014, 2014: bau001. https://doi.org/10.1093/database/bau001.
doi: 10.1093/database/baaa102 pmid: 33306802 |
[43] | WAKELIN S A, GREGG A L, SIMPSON R J, LI G D, RILEY I T, MCKAY A C. Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, 2009,52(4):237-251. |
[44] | TANG Y, ZHANG M, CHEN A, ZHANG W, WEI W, SHENG R. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment, 2017,247:1-8. |
[45] | LIAO H, LI Y, YAO H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. Journal of Soils and Sediments, 2017,18(3):1076-1086. |
[46] | SCHUTTER M, DICK R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates. Soil Biology and Biochemistry, 2001,33(11):1481-1491. |
[47] |
HALSALL D M, TURNER G L, GIBSON A H. Straw and xylan utilization by pure cultures of nitrogen-fixing Azospirillum spp. Applied and Environmental Microbiology, 1985,49(2):423-428.
doi: 10.1128/AEM.49.2.423-428.1985 pmid: 16346730 |
[48] |
BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 2006,38(8):2219-2232.
doi: 10.1016/j.soilbio.2006.01.022 |
[49] | ANTOUN H, BEAUCHAMP C J, GOUSSARD N, CHABOT R, LALANDE R. Potential of rhizobium and bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Molecular Microbial Mcology of the Soil, 1998,204:57-67. |
[50] |
BURGER M, JACKSON L E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 2003,35(1):29-36.
doi: 10.1016/S0038-0717(02)00233-X |
[51] | ZHAO Y, WANG M, HU S, ZHANG X, OUYANG Z, ZHANG G, HUANG B, ZHAO S, WU J, XIE D, ZHU B, YU D, PAN X, XU S, SHI X. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the USA, 2018,115(16):4045-4050. |
[1] | ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117. |
[2] | LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663. |
[3] | WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364. |
[4] | MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925. |
[5] | JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951. |
[6] | WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053. |
[7] | XinRun YANG,Bei XU,ZhiFeng HE,Jing WU,RuiHua ZHUANG,Chao MA,RuShan CHAI,Kianpoor Kalkhajeh Yusef,XinXin YE,Lin ZHU. Impacts of Decomposing Microorganism Inoculum on Straw Decomposition and Crop Yield in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(7): 1359-1367. |
[8] | ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989. |
[9] | JIA LiGuo,SHI XiaoHua,SUYALA Qiqige,QIN YongLin,YU Jing,CHEN Yang,FAN MingShou. Potential Analysis of Organic Fertilizer Substitution for Chemical Fertilizer in Spring Wheat Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4855-4865. |
[10] | GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622. |
[11] | ZHAO XuSheng,QI YongZhi,YAN CuiMei,ZHEN WenChao. Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System [J]. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107. |
[12] | XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41. |
[13] | KunKun WANG,ShiPeng LIAO,Tao REN,XiaoKun LI,RiHuan CONG,JianWei LU. Effect of Continuous Straw Returning on Soil Phosphorus Availability and Crop Phosphorus Utilization Efficiency of Oilseed Rape-Rice Rotation [J]. Scientia Agricultura Sinica, 2020, 53(1): 94-104. |
[14] | Lu YANG,NaoHua ZENG,JinShun BAI,Xing ZHOU,GuoPeng ZHOU,SongJuan GAO,Jun NIE,WeiDong CAO. Responses of Soil Diazotroph Community to Rice Straw, Glucose and Nitrogen Addition During Chinese Milk Vetch Growth [J]. Scientia Agricultura Sinica, 2020, 53(1): 105-116. |
[15] | DAI HongCui,ZHANG Hui,XUE YanFang,GAO YingBo,QIAN Xin,ZHAO HaiJun,CHENG Hao,LI ZongXin,LIU KaiChang. Response of Fungal Community and Function to Different Tillage and Straw Returning Methods [J]. Scientia Agricultura Sinica, 2019, 52(13): 2280-2294. |
|