Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4297-4305.doi: 10.3864/j.issn.0578-1752.2018.22.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Quality Control of Soil Map Database at 1:50 000 Scale in China

XU AiGuo1(),ZHANG RenLian1,TIAN YouGuo2,JI HongJie1,ZHANG HuaiZhi1,LONG HuaiYu1   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 National Agricultural Technology Extension and Service Center, Beijing 100025
  • Received:2018-04-08 Accepted:2018-09-21 Online:2018-11-16 Published:2018-11-16

Abstract:

【Background】 Soil large data with time and space dimension, could provide data support for research work and policy decision in agriculture, environment, and land management. The soil survey maps and reports are the base on building soil time and space database. Because of the large differences of soil mapping standards between different areas and different periods, quality control is necessary for developing high quality soil database from non-standard soil maps and soil survey reports. 【Objective】 The purpose of this study was to analyze the status of paper soil maps, to identify the key issues of quality control in its digital integration database, and to explore the corresponding technical standards and specifications, so as to provide quality guarantee for large scale soil map database. 【Method】 By analyzing the situation of soil maps and soil survey reports and combining related research for precision control of digital topographic map in China, precision requirements suitable for digitizing soil map were developed. After comparing soil type names from county level soil maps and soil standard names in national standard, soil names, especially soil great group names, were revised in soil map database and every soil name was encoded. 【Result】 For building soil map database from different sources large scale soil maps in large area, the quality control included the geographic precision, standardization of digital soil map elements, integration of soil map database, and coding elements type for the whole database. The contents of geographic precision included scanning precision of paper maps, coordinate system, geometric correction precision, as well as collection and numbers of control points. Standardization of map elements extraction mainly included the collection of soil elements and non-soil elements, classification and code of digital element types, and standard of layer name and map sheets. The integration for whole database included revision of soil types, code of soil types and non-soil types, and standard of boundary by using uniform boundary. In the process of soil data integration and harmonization, revising soil names, especially revising soil great group names and coding, was the mainly quality control method. According to national standard and soil profile records in soil survey reports of county, province and national level for reference, more than 300 non-standard soil great group names were revised to 60 national standard names. By hierarchical code method, a unique code for each soil type in the entire database was achieved with five-level coding of soil order, soil great group to soil species. Using uniform boundary, the boundaries of adjacent counties were seamless. Based on the integration of the entire soil special database, the conversion were achieved from counties map sheet to international standard map sheet at 1:50 000. 【Conclusion】 The quality control is very important in building soil map database of large area by using non-standard soil maps from different region and period. The key of quality control were geographic precision, standardization of digital soil map elements, integration of soil map database and coding soil types for the entire database. The quality control methods and corresponding indicators for these three issues conformed to the actual situation of soil survey maps in China. Using the above methods, the 1:50 000 soil map database had a total 13 240 standard map sheets of 1:50 000 scale, and involving 1 688 counties and county farms. In addition, we discussed the status of this database and prospected the future direction for expansion, in the hope that to provide a data basis for the study of the long-term soil properties data mining by combining the physical and chemical properties of the soil.

Key words: 1:50 000 scale soil map, digital, database, quality control, China

Table 1

Permitted lanimetric accuracy for raster soil map of different topography"

比例尺
Scale
地形Landforms
平地、丘陵
Plains and hills mm (pixel, m)
山地、高山地
Mountains mm (pixel, m)
1:50000 ≤0.75(9, 37.5) ≤1(12, 50)
1:100000 ≤0.75(9, 75) ≤1(12, 100)

Table 2

Statistical value of the numbers of tics and RMS per map sheet for two types of topographies"

地形
Topography
图幅数
Frame numbers
平均控制点数
Mean numbers of tics (frame)
最少控制点数
Minimum numbers of tics (frame)
最多控制点数
Maximum numbers of tics (frame)
总均方差
Total RMS of tics
(m)
最小均方差
Minimum Total RMS of tics (m)
最大均方差
Maximum Total RMS of tics (m)
平地、丘陵
Plains and hills
355 31.5 21 81 27.5 3.6 41.6
山地、高山地
Mountains
269 31.4 21 99 34.5 4.9 54.1

Table 3

Examples of soil great group names from county soil survey report before and after revision"

土类名称不规范类型
Not standard types of great group
原土类名
Great group before revision
原亚类名
Sub group no- revised
修编土类名
Great group revised
修编亚类名
Sub group after revision
原土类应为亚类
Great group revising as sub group
冲积土Alluvial soil 新积土Neo-alluvial soils 冲积土Alluvial soil
塿土 Cululic cinnamon soils 褐土Cinnamon soils 塿土 Cululic cinnamon soils
滨海风沙土 Coastal Aeolian soils 风沙土 Aeolian soils 滨海风沙土 Coastal Aeolian soils
黄红壤 Yellowish red earths 红壤 Red earths 黄红壤 Yellowish red earths
黑色石灰土 Rendzina 石灰(岩)土Limestone soils 黑色石灰土 Rendzina
原土类更名
Great group renamed
砖红壤性红壤 lateritic red earth 赤红壤Latosols
盐土/盐碱土Solonchaks 草甸盐土
Meadow solonchaks
草甸盐土Meadow solonchaks 草甸盐土Meadow solonchaks
残积盐土
Residual saline soil
漠境盐土Desert solonchaks 残余盐土Relic solonchaks
习惯用名
Customary names
泛滥土 Flooding soils 新积土Neo-alluvial soils 冲积土Alluvial soil
绿洲灌耕土 Oasis irrigated soils 灌漠土 Irrigated desert soils
别字Misused characters 风砂土Aeolian soils 风沙土Aeolian soils
[1] Natural Resources Conservation Service, National Soil Survey Center, USDA. Soil Survey Geographic (SSURGO) Data Base: Data Use Information. USDA Miscellaneous Publication Number 1527, 1995.
[2] DOBOS E, CARRÉ F, HENGL T, REUTER H I, TÓTH G . Digital Soil Mapping as a Support to Production of Functional Maps. Luxemburg: Office for Official Publications of the European Communities, EUR 22123 EN, 2006: 68.
[3] LAGACHERIE P, MCBRATNEY A B, VOLTZ M . Digital Soil Mapping, an Introductory Perspective. Amsterdam: Elsevier, 2007: 659.
[4] LAMBERT J J, DAROUSSIN J, EIMBERCK M . Soil Geographical Database for Europe & the Mediterranean: Instructions Guide for Elaboration at Scale 1:1 000000. Version 4.0. Luxembourg: Office for Official Publications of the European Communities, EUR 20422 EN, 2003: 64.
[5] European Soil Data Centre. .
[6] CSIRO land and water. Australian soil resource information system (ASRIS). .
[7] Cranfield Soil and AgriFood Institute, Cranfield University . LandIS -land information system: a soils-focused information system for England and Wales. .
[8] YOSHITAKE K . A computerized soil information system for arable land in Japan. Soil Science and Plant Nutrition, 1984,30(3):299-309.
doi: 10.1080/00380768.1984.10434695
[9] 张定祥, 史学正, 于东升, 潘贤章, 孙维侠 . 中国1:100万土壤数据库建设的基础. 地理学报, 2002,57(增刊):82-86.
doi: 10.3321/j.issn:0375-5444.2002.z1.012
ZHANG D X, SHI X Z, YU D S, PAN X Z, SUN W X . The basis for establishing China’s 1:1000000 soil database. Acta Geographic Sinica, 2002,57(Suppl.):82-86. (in Chinese)
doi: 10.3321/j.issn:0375-5444.2002.z1.012
[10] 张定详, 潘贤章, 史学正, 杨金玲, 林杰 . 中国1:100 万土壤数据库建设中的几个问题. 土壤通报, 2003,34(2):81-84.
doi: 10.3321/j.issn:0564-3945.2003.02.001
ZHANG D X, PAN X Z, SHI X Z, YANG J L, LIN J . Several remarks on construction of Chinese soil database at the scale of 1:1M. Chinese Journal of Soil Science, 2003,34(2):81-84. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2003.02.001
[11] 周慧珍 . 中国土壤信息共享研究—1:400万中国土壤分布式查询数据库, 土壤学报, 2002,39(4):483-489.
ZHOU H Z . Sharing of soil information data distributed inquiry data base of 1:4M soil information of China. Acta Pedologica Sinica, 2002,39(4):483-489 . (in Chinese)
[12] 吴克宁, 张雷, 吕巧灵, 李玲, 杨阳 . 基于MAPGIS建立中比例尺土壤数据库的研究—以河南省为例. 土壤通报, 2008,39(3):475-479.
doi: 10.3321/j.issn:0564-3945.2008.03.003
WU K N, ZHANG L, LV Q L, LI L, YANG Y . Establishment of the medium scale soil database based on MAPGIS—a case in Henan province. Chinese Journal of Soil Science, 2008,39(3):475-479. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2008.03.003
[13] 刘京, 常庆瑞, 岳庆玲, 陈勇, 王德彩, 陶文芳 . 陕西省土壤数据库的设计研究. 干旱农业研究, 2008,26(5):105-108.
LIU J, CHANG Q R. YUE Q L, CHEN Y, WANG D C, TAO W F . Established of soil information system of Shaanxi province. Agricultural Research in the Arid Area, 2008,26(5):105-108. (in Chinese)
[14] 荆长伟, 支俊俊, 张操, 林声盼, 肖锐, 李丹, 吴嘉平, 单英杰, 陈红金, 徐进, 倪志华 . 浙江省中小比例尺土壤数据库的构建. 科技通报, 2012,28(11):99-105.
JI C W, ZHI J J, ZHANG C, LIN S P, XIAO R, LI D, WU J P, SHAN Y J, CHEN H J, XU J, NI Z H . Construction of medium and small scale soil geographic data base, Zhejiang province, China. Bulletin Science and Technology, 2012,28(11):99-105. (in Chinese)
[15] 吕成文, 陈志诚, 陈鸿昭, 吴文君 . 海南岛1: 20万SOTER数据库的组织于设计研究. 水土保持学报, 2003,17(6):110-113.
doi: 10.3321/j.issn:1009-2242.2003.06.029
LU C W, CHEN Z C, CHEN H Z, WU W J . Design of Hainan island’s SOTER database at 1:200000 scale. Journal of Soil and Water Conservation, 2003,17(6):110-113. (in Chinese)
doi: 10.3321/j.issn:1009-2242.2003.06.029
[16] 吴嘉平, 胡义镰, 支俊俊, 荆长伟, 陈红金, 徐进, 林声盼, 李丹, 张操, 肖锐, 黄慧青 . 浙江省1: 5万大比例尺土壤数据库. 土壤学报, 2013,50(1):31-40.
WU J P, HU Y L, ZHI J J, JI C W, CHEN H J, XU J, LIN S P, LI D, ZHANG C, XIAO R, HUANG H Q . A 1:50 000 scale soil database of Zhejiang province, China. Acta Pedologica Sinica, 2013,50(1):31-40. (in Chinese)
[17] 席承藩, 章士炎 . 全国土壤普查科研项目成果简介. 土壤学报, 1994,31(3):330-335.
XI C F. ZHANG S Y . Brief introduction on achievements in national soil survey project since 1979. Acta Pedologica Sinica, 1994,31(3):330-335. (in Chinese)
[18] 张维理, 徐爱国, 张认连, 冀宏杰 . 土壤分类研究回顾与我国土壤分类系统的修编. 中国农业科学, 2014,47(16):3214-3230.
doi: 10.3864/j.issn.0578-1752.2014.16.009
ZHANG W L, XU A G, ZHANG R L, JI H J . Review of soil classification and revision of China soil classification system. Scientia Agricultura Sinica, 2014,47(16):3214-3230. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.16.009
[19] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992.
National Soil Survey Office . The Chinese Soil Survey Technology. Beijing: Agricultural Press, 1992. ( in Chinese)
[20] 陈玉舟, 高正华 . 我国土壤调查制图事业的发展与成就. 土壤肥料, 1989(4):7-12.
CHEN Y Z. GAO Z H . Development and achievement of soil investigation cartography in China.. Soil and Fertilizer Sciences in China, 1989(4):7-12. (in Chinese)
[21] 中华人民共和国农业部. 土壤制图: 1: 50 000和1: 100 000土壤图数字化规范: GB/T 32738-2016. 北京: 中国标准出版社, 2016.
Ministry of Agriculture, the People’s Republic of China. Soil Mapping-specifications for Digitizing Soil Maps at the Scale of 1: 50,000 and 1:100,000: GB/T 32738-2016. Beijing: Standards Press of China, 2016. ( in Chinese)
[22] 国家测绘局. 数字地形图产品基本要求: GB/T 17278-2009. 北京: 中国标准出版社, 2009.
State Bureau of Surveying and Mapping. Basic Requirements for Products of Digital Topographic Map: GB/T 17278-2009. Beijing: Standards Press of China, 2009. ( in Chinese)
[23] 国家测绘局. 基础地理信息要素分类与代码: GB/T 13923-2006. 北京: 中国标准出版社, 2006.
State Bureau of Surveying and Mapping. Specifications for Feature Classification and Codes of Fundamental Geographic Information: GB/T 13923-2006. Beijing: Standards Press of China, 2006. ( in Chinese)
[24] 中国标准化研究院. 中国土壤分类与代码: GB/T 17296-2009. 北京: 中国标准出版社, 2009.
China National Institute of Standardization. Classification and Codes for Chinese Soil: GB/T 17296-2009. Beijing: Standards Press of China, 2009. ( in Chinese)
[25] 陕西省土壤普查办公室. 陕西土壤. 北京: 科学出版社, 1990.
Soil Survey Office of Shaanxi Province. Shaanxi Province Soil. Beijing: Science Press, 1992. ( in Chinese)
[26] 曲靖地区土壤普查办公室, 云南省土壤普查办公室. 曲靖地区土壤, 1986.
Soil Survey Office of Qujing District, Soil Survey Office of Yunnan Province. Qujing District Soil, 1986. ( in Chinese)
[27] 张维理 . 智能化海量空间信息分析与地图制图软件包IMAT设计及构建. 中国农业科学, 2014,47(16):3250-3263.
doi: 10.3864/j.issn.0578-1752.2014.16.011
ZHANG W L . Design and development of software package intelligent mapping tools (IMAT). Scientia Agricultura Sinica, 2014,47(16):3250-3263. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.16.011
[28] 张维理, 张认连, 徐爱国, 田有国, 姚政, 段宗颜 . 中国: 1:5万比例尺数字土壤的构建. 中国农业科学, 2014,47(16):3195-3213.
doi: 10.3864/j.issn.0578-1752.2014.16.008
ZHANG W L, ZHANG R L, XU A G, TIAN Y G, YAO Z, DUAN Z Y . Development of China digital soil maps (CDSM) at 1:50 000 scale. Scientia Agricultura Sinica, 2014,47(16):3195-3213. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.16.008
[29] ROSSITER D G . Digital soil mapping as a component of data renewal for areas with sparse soil data infrastructures// Hartemink A E, McBratney A B, Mendonca-Santos M L. Digital Soil Mapping with Limited Data. Springer: Dordrecht, 2008: 69-80.
doi: 10.1007/978-1-4020-8592-5_6
[30] YIYI S, MINASNY B, MCBRATNEY A B, SARWANI M, SUTANDI A . Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 2013,192:77-85.
doi: 10.1016/j.geoderma.2012.08.005
[31] DOBOS E, BIALKÓ T, MICHELI E, KOBZA J . Legacy soil data harmonization and database development// BOETTINGER J L, HOWELL D W, MOORE A C, HARTEMINK A E, BROWN K. Digital Soil Mapping. Progress in Soil Science, Vol 2. Springer: Dordrecht, 2010: 309-323.
doi: 10.1007/978-90-481-8863-5_25
[32] MALONE B P, MINASNY B, ODGERS N P, MCBRATNEY A B . Using model average to combine soil property rasters from legacy soil maps and from point data. Geoderma, 2014,232/234:34-44.
doi: 10.1016/j.geoderma.2014.04.033
[33] TRUONG P N, HEUVELINK G B M . Uncertainty quantification of soil property maps with statistical expert elicitation. Geodama, 2013, 202/203:142-152.
doi: 10.1016/j.geoderma.2013.03.016
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] ZHANG WeiLi,FU BoJie,XU AiGuo,YANG Peng,CHEN Tao,ZHANG RenLian,SHI Zhou,WU WenBin,LI JianBing,JI HongJie,LIU Feng,LEI QiuLiang,LI ZhaoJun,FENG Yao,LI YanLi,XU YongBing,PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[7] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat [J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
[10] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[11] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[12] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[13] LI Xin,ZHANG WenJu,WU Lei,REN Yi,ZHANG JunDa,XU MingGang. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation [J]. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056.
[14] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[15] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!