Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1092-1103.doi: 10.3864/j.issn.0578-1752.2021.06.002
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Can CHEN(),NanNan HAN(
),Yang LIU,XiaoWei SHI,HongQi SI(
),ChuanXi MA(
)
[1] | 赵献林, 夏先春, 刘丽, 何中虎, 孙其信. 小麦低分子量麦谷蛋白亚基及其编码基因研究进展. 中国农业科学, 2007,40(3):440-446. |
ZHAO X L, XIA X C, LIU L, HE Z H, SUN Q X. Review on low molecular weight glutenin subunits and their coding genes. Scientia Agricultura Sinica, 2007,40(3):440-446. (in Chinese) | |
[2] | XIANG L, HUANG L, GONG F Y, LIU J, WANG Y F, JIN Y R, HE Y, HE J S, JIANG Q T, ZHENG Y L, LIU D C, WU B H. Enriching LMW-GS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer. 3 Biotech, 2019,9(10):355. |
[3] | HAZARD B, TRAFFORD K, LOVEGROVE A, GRIFFITHS S, UAUY C, SHEWRY P. Strategies to improve wheat for human health. Nature Food, 2020,1(8):475-480. |
[4] | GUPTA R B, SHEPHERD K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theoretical and Applied Genetics, 1990,80(1):65-74. |
[5] | SINGH N K, SHEPHERD K W. Linkage mapping of genes controlling endosperm storage proteins in wheat. Theoretical and Applied Genetics, 1988,75(4):628-641. |
[6] | D'OVIDIO R, MASCI S. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science, 2004,39(3):321-339. |
[7] | CHO K, JO Y M, LIM S H, KIM J Y, HAN O, LEE J Y. Overexpressing wheat low-molecular-weight glutenin subunits in rice (Oryza sativa L. japonica cv. Koami) seeds. 3 Biotech, 2019,9(2):1-8. |
[8] | RAI A, SINGH A M, GANJEWALA D, KUMAR R R, AHLAWAT A K, SINGH S K, SHARMA P, JAIN N. Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India. Journal of Food Science and Technology, 2019,56(4):1696-1707. |
[9] | BEOM H R, KIM J S, JANG Y R, LIM S H, KIM C K, LEE C K, LEE J Y. Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety. 3 Biotech, 2018,8(1):56. |
[10] | SHAW-SMITH C, REDON R, RICKMAN L. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. Journal of Medical Genetics, 2004,41(4):241-248. |
[11] | MARON L G, GUIMARAES C T, KIRST M, ALBERT P S, BIRCHLER J A, BRADBYRY P J, BUCKLER E S, COLUCCIO A E, DANILOVA T V, KUDRNA D, MAGALHAES J V, PINEROS M A, SCHATZ M C, WING R A, KOCHIAN L. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(13):5241-5246. |
[12] | VOGELSTEIN B, KINZLER K W. Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(16):9236-9241. |
[13] | SYKES P J, NEOH S H, BRISCO M J. Quantitation of targets for PCR by use of limiting dilution. Biotechniques, 1992,13(3):444-449. |
[14] | YANG Q, XI J, CHEN X X, HU S H, CHEN N, QIAO S L, WAN S G, BAO D K. The development of a sensitive droplet digital PCR for quantitative detection of porcine reproductive and respiratory syndrome virus. International Journal of Biological Macromolecules, 2017,104(Part A):1223-1228. |
[15] | LIN Q, FU X Z, LIU L H, LIANG H R, NIU Y J, WEN Y Y, HUANG Z B, LI N Q. Development and application of a sensitive droplet digital PCR (ddPCR) for the detection of infectious spleen and kidney necrosis virus. Aquaculture, 2020,529:735697. |
[16] | ANTKOWIAK M, NOWACKA-WOSZUK J, SZCZERBAL I, SWITONSKI M, SZYDLOWSKI M. AMY2B gene copy-number variation studied by droplet digital PCR (ddPCR) in three canids: Red fox, arctic fox, and Chinese raccoon dog. Folia Biologica, 2020,68(2):51-55. |
[17] | KONISHI T, SHINOHARA K, YAMADA K, SASAKI Y. Acetyl-CoA carboxylase in higher plants: Most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant and Cell Physiology, 1996,37(2):117-122. |
[18] | CHEN Q, SONG J, DU W P, XU L Y, JIANG Y, ZHANG J, ZHANG M, YU G R. Phylogenetic analyses of four Chinese endemic wheat landraces based on two single copy genes. Cereal Research Communications, 2018,46(2):191-200. |
[19] | 雷映霞. 鹅观草属及其近缘属物种的分子系统与进化研究[D]. 雅安: 四川农业大学, 2018. |
LEI Y X. Phylogenetic and evolution analysis of Roegneria and its related genera (Triticeae Poaceae)[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese) | |
[20] | GORNICKI P, PODKOWINSKI J, SCAPPINO L A, DIMAIO J, WARD E, HASELKORN R. Wheat acetyl-CoA carboxylase: cDNA and protein structure. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(15):6860-6864. |
[21] | PODKOWINSKI J, SROGA G E, HASELKORN R, GORNICKI P. Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(5):1870-1874. |
[22] | GORNICKI P, FARIS J, KING I, PODKOWINSKI J, GILL B, HASELKORN R. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(25):14179-14184. |
[23] | 缪青梅, 汪小福, 陈笑芸, 彭城, 徐晓丽, 魏巍, 徐俊锋. 基于双重微滴数字PCR精准定量转基因水稻G6H1的方法研究. 农业生物技术学报, 2019,27(1):159-169. |
MIAO Q M, WANG X F, CHEN X Y, PENG C, XU X L, WEI W, XU J F. Studies on accurate quantification of genetically modified rice (Oryza sative) G6H1 based on duplex droplet digital PCR. Journal of Agricultural Biotechnology, 2019,27(1):159-169. (in Chinese) | |
[24] | 蔡教英, 姚丽锋, 王小玉, 游淑珠, 丁琦. 基于双重微滴式数字PCR对转基因油菜RF1品系的定量方法. 现代食品科技, 2018,34(6):282-287. |
CAI J Y, YAO L F, WANG X Y, YOU S Z, DING Q. Quantitative analysis of genetically modified rapeseed of RF1 by duplex droplet digital polymerase chain reaction (duplex-ddPCR). Modern Food Science and Technology, 2018,34(6):282-287. (in Chinese) | |
[25] | WENG H B, PAN A H, YANG L T, ZHANG C M, LIU Z L, ZHANG D B. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene. Plant Molecular Biology Reporter, 2004,22(3):289-300. |
[26] | CAVIGLIA G P, ABATE M L, TANDOI F, CIANCIO A, AMOROSO A, SALIZZONI M, SARACCO G M, RIZZETTO M, ROMAGNOLI R, SMEDILE A. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection. Journal of Hepatology, 2018,69(2):301-307. |
[27] | DYAVAR S R, YE Z, BYRAREDDY S N, SCARSI K K, WINCHESTER L C, WEINHOLD J A, FLETCHER C V, PODANY A T. Normalization of cell associated antiretroviral drug concentrations with a novel RPP30 droplet digital PCR assay. Scientific Reports, 2018,8(1):3626. |
[28] | ELMAHALAWY S T, HALVARSSON P, SKARIN M, HÖGLUND J. Genetic variants in dyf-7 validated by droplet digital PCR are not drivers for ivermectin resistance in Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 2018,8(2):278-286. |
[29] | YU R L, XUAN W J, ZHOU L, LUO Y, LIU X Y, XIONG P W, REN X Y. Detection of HER2 amplification in formalin-fixed paraffin- embedded breast carcinoma tissue with digital PCR using two TFF3 sequences as internal reference. Experimental and Molecular Pathology, 2018,104(3):235-238. |
[30] | 琚鹏举, 孙黛珍, 宁蕾, 葛林豪, 许成杰, 史华伟, 梁凯歌, 马亮, 刘陶然, 陈明. 采用优化的数字PCR方法分析转基因小麦外源基因拷贝数. 中国农业科学, 2020,53(10):1931-1939. |
JU P J, SUN D Z, NING L, GE L H, XU C J, SHI H W, LIANG K G, MA L, LIU T R, CHEN M. Analysis of foreign gene copy number in transgenic wheat by optimized digital PCR. Scientia Agricultura Sinica, 2020,53(10):1931-1939. (in Chinese) | |
[31] | KAUTBALLY S, LEPROPRE S, LERIGOLEUR A, GINION A, BEAULOYE C. Platelet acetyl-coa carboxylase phosphorylation: a risk stratification marker that reveals platelet-lipid interplay in coronary artery disease patients. Archives of Cardiovascular Diseases Supplements, 2019,11(2):185-186. |
[32] | LIDA M, YAMASHIRO S, YAMAKAWA H, HAYAKAWA K, KURIBARA H, KODAMA T, FURUI S, AKIYAMA H, MAITANI T, HINO A. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat. Journal of Agricultural and Food Chemistry, 2005,53(16):6294-6300. |
[33] | SINGH R, DUBEY A K, SANYAL I. Optimisation of adventitious shoot regeneration and agrobacterium-mediated transformation in Canna × Generalis (Canna Lily). Horticultural Plant Journal, 2019,5(1):39-46. |
[34] | YIN Y C, HOU J M, TIAN S K, YANG L, ZHANG Z X, LI W D, LIU Y. Overexpressing chalcone synthase (CHS) gene enhanced flavonoids accumulation in Glycyrrhiza uralensis hairy roots. Botany Letters, 2020,167(2):219-231. |
[35] | YANG L T, DING J Y, ZHANG C M, JIA J W, WENG H B, LIN W X, ZHANG D B. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports, 2005,23(10/11):759-763. |
[36] | WHALE A S, HUGGETT J F, COWEN S, SPEIRS V, SHAW J, ELLISON S, FOY C A, SCOTT D J. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Research, 2012,40(11):e82. |
[37] | 姜羽, 胡佳莹, 杨立桃. 利用微滴数字PCR分析转基因生物外源基因拷贝数. 农业生物技术学报, 2014,22(10):1298-1305. |
JIANG Y, HU J Y, YANG L T. Estimating the exogenous genes copy number of genetically modified organisms by droplet digital PCR. Journal of Agricultural Biotechnology, 2014,22(10):1298-1305. (in Chinese) | |
[38] | GAO F G, PFEIFER E, FARAH H, KARAMPINI E, DUA D, KAMAI N, CANE P, TOBAL K, SETHI T, SPICER J, MCCAUGHAN F. Microdroplet digital PCR: Detection and quantitation of biomarkers in archived tissue and serial plasma samples in patients with lung cancer. Journal of Thoracic Oncology, 2015,10(1):212-217. |
[39] | HINDSON C M, CHEVILLET J R, BRIGGS H A, GALLICHOTTE E N, RUF I K, HINDSON B J, VESSELLA R L, TEWARI M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 2013,10(10):1003-1005. |
[40] | HARBERD N P, BARTELS D, THOMPSON R D. Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Molecular and General Genetics, 1985,198(2):234-242. |
[41] | CASSIDY B G, DVORAK J, ANDERSON O D. The wheat low molecular weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics, 1998,96(6/7):743-750. |
[42] | KORBEL J O, KIM P M, CHEN X Y, URBAN A E, WEISSMAN S, SNYDER M, GERSTEIN M B. The current excitement about copy-number variation: how it relates to gene duplications and protein families. Current Opinion in Structural Biology, 2008,18(3):366-374. |
[43] | CHEN C, WANG W, YUAN J X, CHEN J, MOU L M. Analysis of HMW-GS and LMW-GS in spring wheat varieties and key parental materials cultivated in Gansu dryland. Acta Agriculturae Boreali- occidentalis Sinica, 2018,27(11):1598-1605. |
[44] | LI Y Y, XIAO J H, WU J J, DUAN J L, LIU Y, YE X G, ZHANG X, GUO X P, GU Y Q, ZHANG L C, JIA J Z, KONG X Y. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. The New Phytologist, 2012,196(1):282-291. |
[45] | SUTTON T, BAUMANN U, HAYES J E, COLLINS N C, SHI B J, SCHNURBUSCH T, HAY A, MAYO G M, PALLOTTA M A, TESTER M A. Adelaide research and scholarship: boron toxicity tolerance in barley arising from efflux transporter amplification. American Association for the Advancement of Science, 2007,318(5855):1446-1449. |
[46] | FRANCIA E, MORCIA C, PASQUARIELLO M, MAZZAMURRO V, MILC J A, RIZZA F, TERZI V, PECCHIONI N. Copy number variation at the HvCBF4-HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Molecular Biology, 2016,92(1/2):161-175. |
[47] | KNOX A K, DHILLON T, CHENG H M, TONDELLI A, PECCHIONI N, STOCKINGER E J. CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theoretical and Applied Genetics, 2010,121(1):21-35. |
[48] | PEARCE S, ZHU J, BOLDIZSÁR Á, VÁGÚJFALVI A, BURKE A, KIMBERLEY G C, GÁBOR G, DUBCOVSKY J. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theoretical and Applied Genetics, 2013,126(11):2683-2697. |
[49] | AURORA D, MELULEKI Z, ADRIAN S T, PETER L, DAVID A L. Copy number variation affecting the Photoperiod-B1 and Vernalization- A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS ONE, 2012,7(3):e33234. |
[50] | ARMOUR J A, SISMANI C, PATSALIS P C, CROSS G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Research, 2000,28(2):605-609. |
[51] | NITCHER R, DISTELFELD A, TAN C T, YAN L L, DUBCOVSKY J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Molecular Genetics and Genomics, 2013,288(5):261-275. |
[1] | CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216. |
[2] | YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299. |
[3] | XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313. |
[4] | ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734. |
[5] | WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810. |
[6] | TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. |
[7] | MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603. |
[8] | LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300. |
[9] | WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318. |
[10] | GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331. |
[11] | ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081. |
[12] | QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109. |
[13] | CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126. |
[14] | ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046. |
[15] | MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855. |
|