Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4728-4739.doi: 10.3864/j.issn.0578-1752.2021.22.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603

XIAO Fang1(),LI Jun1,WANG HaoQian2,ZHAI ShanShan1,CHEN ZiYan2,GAO HongFei1,LI YunJing1,WU Gang1,ZHANG XiuJie2(),WU YuHua1()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement Oil Crops Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Beijing 100025
  • Received:2021-04-28 Accepted:2021-06-16 Online:2021-11-16 Published:2021-11-19
  • Contact: XiuJie ZHANG,YuHua WU E-mail:xf_hzau@163.com;zhxj7410@sina.com;wuyuhua@oilcrops.cn

Abstract:

【Objective】Transgenic maize NK603 approved for import is an important target of genetically modified organism (GMO) regulation in China. The implementation of GMO regulation requires reference materials (RMs) and standardized detection methods. Establishment of a duplex droplet digital PCR (ddPCR) would provide accurate measurement technology for quantification of NK603 event and development of NK603 RMs. 【Method】 A standard plasmid molecule pUC57-NK603 was constructed by DNA synthetic technique; the primer/probe set of NK603 event was combined with different maize reference genes one by one to select reference gene PCR assay with identical amplification ability to NK603 event-specific PCR assay; main reaction parameters, such as annealing temperature and primer/probe concentration,were optimized in the course of establishing duplex ddPCR; the standard plasmid solution was serially diluted to investigate the limit of detection (LOD), limit of quantification (LOQ) and dynamic range of the duplex ddPCR assay; blinded samples with mass fractions of 100%, 10% and 6% were prepared by mixing NK603 powder with non-GM counterpart, to evaluate the accuracy of quantitative results of the duplex ddPCR. 【Result】 The reference gene zSSIIb was determined to combine with NK603 event to establish the NK603/zSSIIb duplex ddPCR method with the standard plasmid molecule pUC57-NK603 as a quality control after analyzing the fluorescence amplitude of positive droplets, separation between positive and negative droplets, raindrop number, and consistency between measured copy number ratio and expected copy number ratio of NK603 event to reference gene. The primer/probe concentration was optimized to be 400 nmol·L-1/200 nmol·L-1 for both NK603 event and zSSIIb gene, and the annealing temperature was determined to be 60°C. The LOD of NK603/zSSIIb duplex ddPCR was estimated to be 2 copies of DNA template, the LOQ was 48 copies of DNA template, both NK603 assay and zSSIIb assay showed good linearity between measured values and theoretical values over the dynamic range from 10 to 60 000 copies of DNA template. The NK603/zSSIIb duplex ddPCR achieved accurate quantitative results of NK603 content in blind maize samples with less than 25% of coefficient of variation; the quantitative results of ddPCR were not significantly different from those of real-time quantitative PCR (qPCR), moreover, the duplex ddPCR showed an advantage over qPCR in term of precision. 【Conclusion】 The selection of reference genes affects the accuracy of quantitative results by ddPCR. Establishment of ddPCR methods should use samples with accurate GMO content as quality controls to evaluate the applicability of reference genes. The NK603/zSSIIb duplex ddPCR method was successfully established using the synthetic standard plasmid molecule pUC57-NK603 as a quality control. NK603 certified reference materials (CRMs) have been successfully developed in China by applying the established NK603/zSSIIb duplex ddPCR assay to characterize the property values.

Key words: transgenic maize NK603, duplex droplet digital PCR, reference plasmid molecule, reference gene, quantification

Table 1

Primer and probe information for PCR assays"

靶标
Target
引物/探针名称
Primer/probe name
序列
Sequence (5'-3')
片段长度
Fragment size (bp)
参考文献
Reference
NK603转化体
NK603 event
603-QF ATGAATGACCTCGAGTAAGCTTGTTAA 108 [30]
603-QR AAGAGATAACAGGATCCACTCAAACACT
603-QP TGGTACCACGCGACACACTTCCACTC
zein-ENDO zein-ENDO F GCATTGTTCGCTCTCCTAGC 110 [31]
zein-ENDO R TACTGCATCCATGGGTTCAT
zein-ENDO P TTCCAGGGCACTTGCCACCA
zein-taq zein-taqze F GCCATTGGGTACCATGAACC 104 [31]
zein-taqze R TACTGCATCCATGGGTTCAT
zein-taqze P AGCTTGATGGCGTGTCCGTCCCT
hmg hmg F TTGGACTAGAAATCTCGTGCTGA 79 [31]
hmg R GCTACATAGGGAGCCTTGTCCT
hmg P CAATCCACACAAACGCACGCGTA
zSSIIb zSSIIb F CGGTGGATGCTAAGGCTGATG 88 [32]
zSSIIb R AAAGGGCCAGGTTCATTATCCTC
zSSIIb P TAAGGAGCACTCGCCGCCGCATCTG
Adh1 Adh1 F CGTCGTTTCCCATCTCTTCCTCC 135 [31]
Adh1 R CCACTCCGAGACCCTCAGTC
Adh1 P AATCAGGGCTCATTTTCTCGCTCCTCA

Fig. 1

Schematic diagram of the fusion fragment and standard plasmid molecule pUC57-NK603 A: The fusion fragment of NK603 event-specific sequence and maize reference gene sequences. The NK603 event-specific sequence was marked with single underline, the spacer sequence was shaded, the Adh1 sequence was shown without marks, the zSSIIb sequence was marked with underlined dashed line, the hmg sequence was marked with double underline, and the zein sequence was shown in the box. B: Schematic diagram of the standard plasmid molecule pUC57-NK603"

Fig. 2

Hot plots of duplex ddPCR of NK603 event and different reference genes A: One-dimension (1-D) hot plots of NK603 event and zein-ENDO gene for NK603/zein-ENDO duplex ddPCR; B: 1-D hot plots of NK603 event and Adh1 gene for NK603/Adh1 duplex ddPCR; C: 1-D hot plots of NK603 event and hmg gene for NK603/hmg duplex ddPCR; D: 1-D hot plots of NK603 event and zSSIIb gene for NK603/zSSIIb duplex ddPCR; E: 1-D hot plots of NK603 event and zein-taq gene for NK603/zein-taq duplex ddPCR; F: Two-dimension (2-D) hot plot of NK603/zSSIIb duplex ddPCR at annealing temperature of 60℃"

Fig. 3

Measured copy number ratios of duplex ddPCR assays of NK603/hmg, NK603/zSSIIb and NK603/zein-taq at different annealing temperature"

Fig. 4

One-dimension hot map of NK603/zSSIIb duplex ddPCR for optimization of primer/probe concentration and measured copy number ratios of NK603 event and zSSIIb gene by NK603/zSSIIb duplex ddPCR A: 1-D hot plots of NK603 event of duplex ddPCR at different primer/probe concentrations; B: 1-D hot plots of zSSIIb gene of duplex ddPCR at different primer/probe concentrations; C: Measured copy number ratios of NK603 event to zSSIIb gene at different primer/probe concentrations. Sample order: 1-4: The primer/probe concentration of NK603 event was the same as that of zSSIIb gene, corresponding sequentially to 100/50, 200/100, 400/200, 800 nmol·L-1/400 nmol·L-1. 5-8: The primer/probe concentration of NK603 event was different from that of zSSIIb gene, corresponding sequentially to 400/200, 200 nmol·L-1/100 nmol·L-1; 200/100, 400 nmol·L-1/200 nmol·L-1; 400/200, 800 nmol·L-1/400 nmol·L-1; 800/400, 400 nmol·L-1/200 nmol·L-1"

Fig. 5

The dynamic range of NK603/zSSIIb duplex ddPCR"

Table 2

Transgenic DNA content in blind samples measured by duplex ddPCR and qPCR"

方法
Method
样品
Sample
质量分数
Mass fraction (%)
转基因DNA含量 Transgenic DNA content (%) 平均值
Mean
标准偏差
SD
变异系数
RSD (%)
1 2 3
ddPCR S1 100 50.39 50.60 52.17 51.05 0.97 1.91
S2 10 4.95 4.74 4.79 4.82 0.11 2.28
S3 6 3.05 3.08 3.07 3.07 0.02 0.50
qPCR S1 100 51.17 57.72 57.76 55.55 3.79 6.83
S2 10 5.28 4.86 5.12 5.09 0.21 4.17
S3 6 3.17 3.69 3.92 3.59 0.38 10.68
[1] LAURA B, MARC H V D B, MARCO M, ENRICO B, ALEXANDRE P. GMOMETHODS: The European Union database of reference methods for GMO analysis. Journal of AOAC International, 2012, 95(6): 1713-1719.
doi: 10.5740/jaoacint.12-050
[2] WU Y H, LI J, LI X Y, ZHAI S S, GAO H F, LI Y J, ZHANG X J, WU G. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2019, 411(9): 1729-1744.
doi: 10.1007/s00216-019-01576-w
[3] QUAN P L, SAUZADE M, BROUZES E. dPCR: A technology review. Sensors, 2018, 18(4): 1271.
doi: 10.3390/s18041271
[4] BHAT S, CURACH N, MOSTYN T, BAINS G S, GRIFFITHS K R, EMSLIE K R. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Analytical Chemistry, 2010, 82(17): 7185-7192.
doi: 10.1021/ac100845m
[5] BOGOŽALEC KOŠIR A, DEMŠAR T, ŠTEBIH D, ŽEL J, MILAVEC M. Digital PCR as an effective tool for GMO quantification in complex matrices. Food Chemistry, 2019, 294(1): 73-78.
doi: 10.1016/j.foodchem.2019.05.029
[6] WHALE A S, COWEN S, FOY C A, HUGGETT J F. Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS ONE, 2013, 8(3): e58177.
doi: 10.1371/journal.pone.0058177
[7] COTTENET G, BLANCPAIN C, CHUAH P F. Performance assessment of digital PCR for the quantification of GM-maize and GM-soya events. Analytical and Bioanalytical Chemistry, 2019, 411: 2461-2469.
doi: 10.1007/s00216-019-01692-7
[8] KÖPPEL R, BUCHER T, FREI A, WAIBLINGER H U. Droplet digital PCR versus multiplex real-time PCR method for the detection and quantification of DNA from the four transgenic soy traits MON87769, MON87708, MON87705 and FG72, and lectin. European Food Research and Technology, 2015, 241(4): 521-527.
doi: 10.1007/s00217-015-2481-3
[9] CAO Y, RAITH M R, GRIFFITH J F. Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. Water Research, 2015, 70: 337-349.
doi: 10.1016/j.watres.2014.12.008
[10] DEVONSHIRE A S, HONEYBORNE I, GUTTERIDGE A, WHALE A S, NIXON G, WILSON P, JONES G, MCHUGH T D, FOY C A, HUGGETT J F. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Analytical Chemistry, 2015, 87(7): 3706-3713.
doi: 10.1021/ac5041617
[11] WHITE H, DEPREZ L, CORBISIER P, HALL V, LIN F, MAZOUA S, TRAPMANN S, AGGERHOLM A, ANDRIKOVICS H, AKIKI S, BARBANY G, BOECKX N, BENCH A, CATHERWOOD M, CAYUELA J-M, CHUDLEIGH S, CLENCH T, COLOMER D, DARAIO F, DULUCQ S, FARRUGIA J, FLETCHER L, FORONI L, GANDERTON R, GERRARD G, GINEIKIENĖ E, HAYETTE S, EL HOUSNI H, IZZO B, JANSSON M, JOHNELS P, JURCEK T, KAIRISTO V, KIZILORS A, KIM D-W, LANGE T, LION T, POLAKOVA K M, MARTINELLI G, MCCARRON S, MERLE P A, MILNER B, MITTERBAUER-HOHENDANNER G, NAGAR M, NICKLESS G. A certified plasmid reference material for the standardisation of BCR-ABL1 mRNA quantification by real-time quantitative PCR. Leukemia, 2015, 29(2): 369-376.
doi: 10.1038/leu.2014.217
[12] HUGGETT J F, FOY C A, BENES V, EMSLIE K, GARSON J A, HAYNES R, HELLEMANS J, KUBISTA M, MUELLER R D, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T, BUSTIN S A. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clinical Chemistry, 2013, 59(6): 892-902.
doi: 10.1373/clinchem.2013.206375
[13] YOO H B, PARK S R, DONG L H, WANG J, SUI Z W, PAVŠIČ J, MILAVEC M, AKGOZ M, MOZIOĞLU E, CORBISIER P, JANKA M, COSME B, DE V CAVALCANTE J J, FLATSHART R B, BURKE D, FORBES-SMITH M, MCLAUGHLIN J, EMSLIE K, WHALE A S, HUGGETT J F, PARKES H, KLINE M C, HARENZA J L, VALLONE P M. International comparison of enumeration-based quantification of DNA copy-concentration using flow cytometric counting and digital polymerase chain reaction. Analytical Chemistry, 2016, 88(24): 12169-12176.
doi: 10.1021/acs.analchem.6b03076
[14] KLINE M C, DUEWER D L. Evaluating droplet digital polymerase chain reaction for the quantification of human genomic DNA: Lifting the traceability fog. Analytical Chemistry, 2017, 89(8): 4648-4654.
doi: 10.1021/acs.analchem.7b00240
[15] DEMEKE T, DOBNIK D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2018, 410(17): 4039-4050.
doi: 10.1007/s00216-018-1010-1
[16] CORBISIER P, PINHEIRO L, MAZOUA S, KORTEKAAS A M, CHUNG P Y J, GERGANOVA T, ROEBBEN G, EMONS H, EMSLIE K. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Analytical and Bioanalytical Chemistry, 2015, 407(7): 1831-1840.
doi: 10.1007/s00216-015-8458-z
[17] DONG L H, MENG Y, SUI Z W, WANG J, WU L Q, FU B Q. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Scientific Reports, 2015, 5: 13174.
doi: 10.1038/srep13174
[18] DUEWER D L, KLINE M C, ROMSOS E L, TOMAN B. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter. Analytical and Bioanalytical Chemistry, 2018, 410(12): 2879-2887.
doi: 10.1007/s00216-018-0982-1
[19] HAYNES R J, KLINE M C, TOMAN B, SCOTT C, WALLACE P, BUTLER J M, HOLDEN M J. Standard reference material 2366 for measurement of human cytomegalovirus DNA. The Journal of Molecular Diagnostics, 2013, 15(2): 177-185.
doi: 10.1016/j.jmoldx.2012.09.007
[20] DEPREZ L, MAZOUA S, CORBISIER P, TRAPMANN S, SCHIMMEL H, WHITE H, CROSS N, EMONS H. The certification of the copy number concentration of solutions of plasmid DNA containing a BCR-ABL b3a2 transcript fragment, Certified Reference Materials: ERM®-AD623a, ERM®-AD623b, ERM®-AD623c, ERM®-AD623d, ERM®-AD623e, ERM®-AD623f. Publications Office of the European Union, 2012, ISSN: 1831-9424.
[21] DOBNIK D, SPILSBERG B, BOGOŽALEC K A, HOLST-JENSEN A, ŽEL J. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Analytical Chemistry, 2015, 87(16): 8218-8226.
doi: 10.1021/acs.analchem.5b01208
[22] WAN J R, SONG L, WU, Y L, BRZOSKA P, KEYS D, CHEN C F, VALLIYODAN B B, SHANNON J G, NGUYEN H T. Application of digital PCR in the analysis of transgenic soybean plants. Advances in Bioscience and Biotechnology, 2016, 7(10): 403-417.
doi: 10.4236/abb.2016.710039
[23] KOŠIR A B, SPILSBERG B, HOLST-JENSEN A, ŽEL J, DOBNIK D. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Scientific Reports, 2017, 7(1): 8601.
doi: 10.1038/s41598-017-09377-w
[24] JIANG Y, YANG H, QUAN S, LIU Y N, SHEN P, YANG L T. Development of certified matrix-based reference material of genetically modified rice event TT51-1 for real-time PCR quantification. Analytical and Bioanalytical Chemistry, 2015, 407(22): 6731-6739.
doi: 10.1007/s00216-015-8836-6
[25] YANG Y, LI L, YANG H, LI X Y, ZHANG X J, XU J F, ZHANG D B, JIN W J, YANG L T. Development of certified matrix-based reference material as a calibrator for genetically modified rice G6H1 analysis. Journal of Agricultural and Food Chemistry, 2018, 66(14): 3708-3715.
doi: 10.1021/acs.jafc.8b00468
[26] LI J, LI L, ZHANG L, ZHANG X J, LI X Y, ZHAI S S, GAO H F, LI Y J, WU G, WU Y H. Development of a certified genomic DNA reference material for detection and quantification of genetically modified rice KMD. Analytical and Bioanalytical Chemistry, 2020, 412(25): 7007-7016.
doi: 10.1007/s00216-020-02834-y
[27] LI J, ZHANG L, LI L, LI X Y, ZHANG X J, ZHAI S S, GAO H F, LI Y J, WU G, WU Y H. Development of genomic DNA certified reference materials for genetically modified rice Kefeng 6. ACS Omega, 2020, 5(34): 21602-21609.
doi: 10.1021/acsomega.0c02274
[28] 李俊, 李夏莹, 李亮, 宋贵文, 沈平, 张丽, 翟杉杉, 柳方方, 吴刚, 张秀杰, 武玉花. 转基因大豆MON89788 纯品粉末标准物质的研制及定值. 农业生物技术学报, 2020, 28(6): 1084-1095.
LI J, LI X Y, LI L, SONG G W, SHEN P, ZHANG L, ZHAI S S, LIU F F, WU G, ZHANG X J, WU Y H. Development and characterization of pure matrix reference materials for detection of transgenic soybean (Glycine max) MON89788. Journal of Agricultural Biotechnology, 2020, 28(6): 1084-1095. (in Chinese)
[29] 李俊, 李夏莹, 李亮, 宋贵文, 沈平, 张丽, 翟杉杉, 柳方方, 吴刚, 张秀杰, 武玉花. 转基因玉米MIR604 基体标准物质研制. 作物学报, 2020, 46(4): 473-483.
doi: 10.3724/SP.J.1006.2020.93047
LI J, LI X Y, LI L, SONG G W, SHEN P, ZHANG L, ZHAI S S, LIU F F, WU G, ZHANG X J, WU Y H. Development of genetically modified maize MIR604 matrix reference materials. Acta Agronomica Sinica, 2020, 46(4): 473-483. (in Chinese)
doi: 10.3724/SP.J.1006.2020.93047
[30] NIELSEN C R, BERDAL K G, HOLST-JENSEN A. Characterization of the integration site and development of an event-specific real-time PCR assay for NK603 maize from a low starting copy number. European Food Research and Technology, 2004, 219(4): 421-427.
[31] PAPAZOVA N, ZHANG D, GRUDEN K, VOJVODA J, YANG L T, GAŠPARIČ M B, BLEJEC A, FOUILLOUX S, LOOSE M, TAVERNIERS I. Evaluation of the reliability of maize reference assays for GMO quantification. Analytical and Bioanalytical Chemistry, 2010, 396(6): 2189-2201.
doi: 10.1007/s00216-009-3386-4
[32] 杨立桃, 刘信, 张大兵, 沈平, 郭金超, 金芜军. 农业部1861号公告-3-2012 转基因植物及其产品成分检测玉米内标准基因定性PCR方法. 北京: 中国农业出版社, 2012.
YANG L T, LIU X, ZHANG D B, SHEN P, GUO J C, JIN W J. Announcement by the Ministry of Agriculture No.1861-3-2012 Detection of Genetically Modified Plants and Derived Products Target-Taxon-Specific Qualitative PCR Method for Maize. Beijing: China Agriculture Press, 2012. (in Chinese)
[33] CHAOUACHI M, BÉRARD A, SAÏD K. Relative quantification in seed GMO analysis: State of art and bottlenecks. Transgenic Research, 2013, 22(3): 461-476.
doi: 10.1007/s11248-012-9684-1
[34] HOLST-JENSEN A, DE LOOSE M, VAN DEN EEDE G. Coherence between legal requirements and approaches for detection of genetically modified organisms (GMO) and their derived products. Journal of Agricultural and Food Chemistry, 2006, 54(8): 2799-2809.
doi: 10.1021/jf052849a
[35] DEMEKE T, ENG M. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events. Biomolecular Detection and Quantification, 2018, 15: 24-29.
doi: 10.1016/j.bdq.2018.03.002
[1] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[2] JU PengJu,NING Lei,GE LinHao,XU ChengJie,SHI HuaWei,LIANG KaiGe,MA Liang,LIU TaoRan,CHEN Ming,SUN DaiZhen. Analysis of Foreign Gene Copy Number in Transgenic Wheat by Optimized Digital PCR [J]. Scientia Agricultura Sinica, 2020, 53(10): 1931-1939.
[3] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[4] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[5] PENG FuZhi, RAN MaoLiang, WENG Bo, LI Zhi, DONG LianHua, CHEN Bin. Validation of Reference Genes for Quantitative RT-PCR Analysis in Porcine Testis Tissues [J]. Scientia Agricultura Sinica, 2017, 50(15): 3033-3041.
[6] YANG Dan, LI Qing, WANG GuiXi, MA QingHua, ZHU LiQuan. Reference Genes Selection and System Establishment for Real-time qPCR Analysis in Ping’ou Hybrid Hazelnut (C. heterophylla Fisch. × C. avellana L.) [J]. Scientia Agricultura Sinica, 2017, 50(12): 2399-2410.
[7] CHENG Kun, YUE Qian, XU Xiang-rui, YAN Ming, PAN Gen-xing. Characterizing and Quantifying Soil Resilience for Ecosystem Services [J]. Scientia Agricultura Sinica, 2015, 48(23): 4621-4629.
[8] YUE Xiu-Li-1, GAO Xin-Ju-1, WANG Jin-Jun-2, 吕Juan-Juan-1 , SHEN Hui-Min-1. Selection of Reference Genes and Study of the Expression Levels of Detoxifying Enzymes of Tetranychus urticae (Acari: Tetranychidae) [J]. Scientia Agricultura Sinica, 2013, 46(21): 4542-4549.
[9] JI Hong, WANG Zhong-Wei, GUO Jing-Ru, WANG Jian-Fa, HE Rong-He, YANG Huan-Min. Stability of Endogenous Reference Genes in Green-Goose Tissues During Prelaying and Laying Periods  [J]. Scientia Agricultura Sinica, 2012, 45(11): 2260-2266.
[10] . Real-Time PCR Approach for Cellulolytic Bacteria Quantification in Rumen [J]. Scientia Agricultura Sinica, 2008, 41(6): 1795-1803 .
[11] ,. Development and Application of a Real-Time PCR Approach for Quantification of Methanobacterium formicium in Rumen [J]. Scientia Agricultura Sinica, 2006, 39(01): 161-169 .
[12] ,,,. Effect of Chinese Herbal Medicinal Ingredients on IL-2mRNA Levels of T Lymphocytes in Mice Measured with Semi-quantification RT-PCR [J]. Scientia Agricultura Sinica, 2005, 38(09): 1911-1916 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!