Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4241-4251.doi: 10.3864/j.issn.0578-1752.2018.22.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents

YANG YanHui1(),MA Xiao1,2,ZHANG ZiShan1,GUO Jun2,LI YueNan1,LIANG Ying1,SONG JianMin2(),ZHAO ShiJie1()   

  1. 1 College of Life Sciences, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong;
    2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
  • Received:2018-06-04 Accepted:2018-09-20 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】 The objective of this paper was to investigate the effects of different drought levels on the photosynthetic characteristics of wheat with different wax contents. 【Method】 A pair of wheat near-isogenic lines (NILs), including high-wax line JM205 and low-wax line JM204, were used as experimental materials to simulate the process of soil moisture change in the field by means of gradual drought stress in the artificial climate chamber. The two wheat near-isogenic lines with different waxy contents were planted in the same pot to ensure the same drought degree. With the prolongation of drought treatment, the relative soil water content decreased gradually. Water potential, photosynthetic gas exchange parameters and fluorescence parameters of wheat flag leaf under different soil water contents were measured. 【Result】 Under low water stress (60%-49% of relative soil water content), there was no significant difference in photosynthetic rate (Pn) between flag leaf of JM205 and JM204, however, the photosynthetic rate of both wax and waxy lines decreased gradually, but the less waxy line JM204 showed a greater decline. Under moderate drought stress (Relative soil water content between 49% and 32%), the high-wax plant had higher water potential and larger stomatal opening than that of the low-wax one, so the CO2 supply was sufficient and the photosynthetic rate was higher. Under moderate drought stress, the PSII actual photochemical efficiency (ΦPSⅡ) and maximum photochemical efficiency (Fv/Fm) decreased more rapidly in the low-wax line, which indicated that PSII electron transfer inhibition and light inhibition were more serious. The JIP-test analysis found that blocked PSII electron transport was mainly due to QA to QB receptor-side electron transfer restrictions. In contrast, the high-wax line maintained relatively higher photosynthetic capacity under drought conditions, with a smoother electron transfer and less excess light energy, resulting in less light suppression. When relative soil water content dropped below 32%, the water potential and photosynthetic capacity of both NILs decreased significantly and there was no significant difference between them. 【Conclusion】 This study preliminarily improved understanding of the physiological mechanism of leaf wax improving drought tolerance of plants, and the high-wax line JM205 has significant drought resistance in the soil moisture range of 49%-32%, providing theoretical basis for selection and cultivation of drought-resistant wheat varieties.

Key words: common wheat (Triticumaestivum L), nearly isogenetic lines, drought stress, wax, photosynthetic characteristics

Fig. 1

The photo (A) and scanning electronic microscopy (B, C) of two wheat near-isogenic lines"

Fig. 2

The change of soil moisture variation (A) during the drought treatment stage and the effects of drought on water potential (B) in leaves of wheat"

Fig. 3

Effect of drought stress (D) or sufficient irrigation (CK) on gas exchange parameters of wheat NILs (JM204, JM205) with different wax content"

Fig. 4

Effects of different drought treats (D) or sufficient irrigation (CK) on Fv/Fm and ΦPSII of flag leaves from wheat NILs (JM204, JM205) with different wax content"

Fig. 5

Changes of O-P normalized fast chlorophyll fluorescence induction kinetics curve of JM205 (A, B) and JM204 (C, D) wheat treated with different drought stress B and D are obtained from the curves of different drought degrees in Figures A and C minus the curve before drought treatment. The same as below"

Fig. 6

Changes of O-J normalized fast chlorophyll fluorescence induction kinetics curve of JM205 (A, B) and JM204 (C, D) wheat treated with different drought stress"

Fig. 7

Effect of drought stress on drought weight of wheat NILs (JM204,JM205) with different wax contents * indicates significant difference at P<0.05"

[1] CHOULET F, ALBERTI A, THEIL S, GLOVER N, BARBE V, DARON J, PINGAULT L, SOURDILLE P, COULOUX A, PAUX E, LEROY P, MANGENOT S, GUILHOT N, LE GOUIS J, BALFOURIER F, ALAUX M, JAMILLOUX V, POULAIN J, DURAND C, BELLEC A, GASPIN C, SAFAR J, DOLEZEL J, ROGERS J, VANDEPOELE K, AURY J M, MAYER K, BERGES H, QUESNEVILLE H, WINCKER P, FEUILLET C . Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014,345(6194):1249721.
doi: 10.1126/science.1249721 pmid: 25035497
[2] EVERSOLE K, FEUILLET C, MAYER K F X, ROGERS J . Slicing the wheat genome. Science, 2014,345(6194):285-287.
doi: 10.1126/science.1257983
[3] 黄玲, 张正斌, 崔玉亭, 刘孟雨, 柴守玺, 陈兆波 . 小麦叶片蜡质含量与水分利用效率和产量的关系. 麦类作物学报, 2003,23(3):41-44.
doi: 10.7606/j.issn.1009-1041.2003.03.087
HUANG L, ZHANG Z B, CUI Y T, LIU M Y, CHAI S X, CHEN Z B . Relationship between wax content and water use efficiency of leaf and yield in wheat. Journal of Tritieeae Crops, 2003,23(3):41-44. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.087
[4] CHEN Q, TAO S, BI X, XU X, WANG L, LI X . Research progress in physiological and molecular biology mechanism of drought resistance in rice. American Journal of Molecular Biology, 2015,3(2):102-107
[5] 史玉炜, 王燕凌, 李文兵, 高述民, 李霞 . 水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氦酸含量变化的影响. 新疆农业大学学报, 2007,30(2):5-8.
doi: 10.3969/j.issn.1007-8614.2007.02.002
SHI Y W, WANG Y L, LI W B, GAO S M, LI X . Effects of water stress on soluble protein, soluble sugar and proline content in Tamarix hispida. Journal of Xinjiang Agricultural University, 2007,30(2):5-8. (in Chinese)
doi: 10.3969/j.issn.1007-8614.2007.02.002
[6] LIU X, LI L, LI M, SU L, LIAN S, ZHANG B, LI X, GE K, LI L . AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports, 2018,8(1):2250.
doi: 10.1038/s41598-018-20542-7 pmid: 5796971
[7] 张永强, 毛学森, 孙宏勇, 李文杰, 于沪宁 . 干旱胁迫对冬小麦叶绿素荧光的影响. 中国生态农业学报, 2002,10(4):13-15.
ZHANG Y Q, MAO X S, SUN H Y, LI W J, YU H N . Effects of drought stress on chlorophyll fluorescence of winter wheat. Chinese Journal of Eco-Agriculture, 2002,10(4):13-15. (in Chinese)
[8] WOLFE D W, HENDERSON D W, HSIAO T C, ALVINO A . Interactive water and nitrogen effects on senescence of maize. I. leaf area duration, nitrogen distribution, and yield. Agronomy Journal, 1988,80(6):859-864.
doi: 10.2134/agronj1988.00021962008000060004x
[9] 陈文峻, 蒯本科 . 植物的滞绿突变. 植物生理学通讯, 1999,35(4):321-324.
CHEN W J, KUAI B K . Stay-green mutations in plants. Plant Physiology Communications, 1999,35(4):321-324. (in Chinese)
[10] PORRA R J . The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosynthesis Research, 2002,73(1/3):149-156.
doi: 10.1023/A:1020470224740 pmid: 16245116
[11] KOCH K, EESIKAT H J . The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron, 2008,39(7):759-772.
doi: 10.1016/j.micron.2007.11.010 pmid: 18187332
[12] JETTER R, SCHAFFER S . Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology, 2001,126(4):1725-1737.
[13] CAMERON K D, TEECE M A, SMART L B . Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiology, 2006,140(1):176-183.
doi: 10.1104/pp.105.069724 pmid: 16361524
[14] 张志飞, 饶力群, 向佐湘, 胡晓敏, 王晓杰 . 高羊茅叶片表皮蜡质含量与其抗旱性的关系. 西北植物学报, 2007,27(7):1417-1421.
doi: 10.3321/j.issn:1000-4025.2007.07.022
ZHANG Z F, RAO L Q, XIANG Z X, HU X M, WANG X J . Epidermis wax content and drought resistance among different tall fescue (Festucaarun-dinacea Schreb.) varieties. Acta Botanica Boreali-Occidentalia Sinica, 2007,27(7):1417-1421. (in Chinese)
doi: 10.3321/j.issn:1000-4025.2007.07.022
[15] 张正斌, 山仑 . 小麦抗旱生理指标与叶片卷曲度和蜡质关系研究. 作物学报, 1998,24(5):608-612.
ZHANG Z B, SHAN L . Studies on relationship between drought resistance physiological traits and leaf curl degree and wax of wheat. Acta Agronomica Sinica, 1998,24(5):608-612. (in Chinese)
[16] YANG M G, YANG Q Y, FU T D, ZHOU Y M . Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Report, 2011,30(3):373-388.
doi: 10.1007/s00299-010-0940-7 pmid: 20976458
[17] VOGG G, FISCHER S, LEIDW J, EMMANUEL E, JETTER R, LEVY A A, RIEDERER M . Tomato fruit cuticular waxes and their effects on transpiration barrier properties: Functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl- COA synthase. Journal of Experimental Botany, 2004,55:1401-1410.
doi: 10.1093/jxb/erh149 pmid: 15133057
[18] 王美芳, 陈巨莲, 原国辉, 雷振生, 吴政卿, 赵献林 . 植物表面蜡质对植食性昆虫的影响研究进展. 生态环境学报, 2009,18(3):1155-1160.
doi: 10.3969/j.issn.1674-5906.2009.03.064
WANG M F, CHEN J L, YUAN G H, LEI Z S, WU Z Q, ZHAO X L . Effects of plant epicuticular cuticular waxes on phytophagous insects behavior. Ecology and Environmental Sciences, 2009,18(3):1155-1160. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2009.03.064
[19] 刘勇, 陈巨莲, 程登发 . 不同小麦品种(系)叶片表面蜡质对两种麦蚜取食的影响. 应用生态学报, 2007,18(8):1785-1788.
LIU Y, CHEN J L, CHENG D F . Effects of wheat leaf surface waxes on the feeding of two wheat aphid species. Chinese Journal of Applied Ecology, 2007,18(8):1785-1788. (in Chinese)
[20] 李希峰, 董娜 . 小麦近等基因系的构建及应用进展. 安徽农业科学, 2012,40(5):2577-2579.
doi: 10.3969/j.issn.0517-6611.2012.05.006
LI X F, DONG N . Progress in construction and application of near-isogenic line in wheat. Journal of Anhui Agricultural Sciences, 2012,40(5):2577-2579. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2012.05.006
[21] 徐文, 申浩, 郭军, 余晓丛, 李祥, 杨彦会, 马晓, 赵世杰, 宋健民 . 旗叶蜡质含量不同小麦近等基因系的抗旱性. 作物学报, 2016,42(11):1700-1707.
doi: 10.3724/SP.J.1006.2016.01700
XU W, SHEN H, GUO J, YU X C, LI X, YANG Y H, MA X, ZHAO S J, SONG J M . Drought resistance of wheat NILs with different cuticular wax contents in flag leaf. Acta Agronomica Sinica, 2016,42(11):1700-1707. (in Chinese)
doi: 10.3724/SP.J.1006.2016.01700
[22] 常永义, 吴红, 牛军强 . 干旱胁迫对葡萄叶片生理指标的影响. 中外葡萄与葡萄酒, 2005(2):11-14.
CHANG Y Y, WU H, NIU J Q . Effect of water stress on physiological index of grapevine leaves. Sino-Overseas Grapevine and Wine. 2005(2):11-14. (in Chinese)
[23] 中华人民共和国国家质量监督检验检疫总局. 气象干旱等级: GB/T20481-2006. 北京: 中国标准出版社, 2006: 12-17.
General administration of quality supervision inspection and quarantine of the people's republic of China. Classification of Meteorological Drought: GT/B20481-2006. Beijing: Standards Press of China, 2006: 12-17. (in Chinese)
[24] ZHANG L T, GAO H Y, ZHANG Z S, XUE Z C, MENG Q W . Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves. Biology Plant, 2012,56(2):365-368.
doi: 10.1007/s10535-012-0100-8
[25] STRAAER B J . Measuring fast fluorescence transients to address environmental questions: the JIP-test. Photosynthesis: From Light to Biosphere, 1995,5:977-980.
[26] YUSUF M A, KUMAR D, RAJWANSHI R, STRASSER R J, TSIMILLI-MICHAEL M, GOVINDJEE, SARIN N B . Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta, 2010,1797(8):1428-1438.
[27] MATHUR S, ALLAKHVERDIEV S I, JAJOO A . Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta, 2010,1807:22-29.
doi: 10.1016/j.bbabio.2010.09.001 pmid: 20840840
[28] 孙山, 王少敏, 王家喜, 高辉远 . 黑暗中脱水对'金太阳'杏离体叶片PSⅠ和PSⅡ功能的影响. 园艺学报, 2008,35(1):1-6.
doi: 10.3321/j.issn:0513-353X.2008.01.001
SUN S, WANG S M, WANG J X, GAO H Y . Effects of dehydration in the dark in functions of PSI and PSII in apricot (Prunus armeniaca L. “JinTaiyang”) leaves. Acta Horticulturae Sinica, 2008,35(1):1-6. (in Chinese)
doi: 10.3321/j.issn:0513-353X.2008.01.001
[29] LI P M, CHENG L L, GAO H Y, JIANG C D, PENG T . Hetero generous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. Journal of Plant Physiology, 2009,166(15):1607-1615.
doi: 10.1016/j.jplph.2009.04.013 pmid: 19473728
[30] PREMACHANDRA G S, SANEOKA H, FUJITA K, OJATA S . Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in Sorghum. Journal of Experimental Botany, 1992,43(12):1569-1576.
doi: 10.1093/jxb/43.12.1569
[31] BUROW G B, FRANKS C D, XIN Z . Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum. Crop Science, 2008,48(1):41-48.
doi: 10.2135/cropsci2007.02.0119
[32] PARK J J, JIN P, YOON J, YANG J I, JEONG H J, RANATHUNGE K, SCHREIBER L, FRANKE R, LEE I J, AN G . Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Molecular Biology, 2010,74(1/2):91-103.
doi: 10.1007/s11103-010-9656-x pmid: 20593223
[33] 单长卷, 梁宗锁 . 土壤干旱对刺槐幼苗水分生理特征的影响. 山东农业大学学报(自然科学版), 2006,37(4):598-602.
SHAN C J, LIANG Z S . Study on water physiological characteristics of black locust seedling under soil drought condition. Journal of Shandong Agricultural University (Natural Science Edition), 2006,37(4):598-602. (in Chinese)
[34] FARQUHAR G D, SHARKEY T D . Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982,33:317-345.
doi: 10.1146/annurev.pp.33.060182.001533
[35] 郭彦军, 倪郁, 郭芸江, 韩龙, 唐华 . 空气湿度与土壤水分胁迫对紫花苜蓿叶表皮蜡质特性的影响. 生态学报, 2011,31(18):5273-5280.
GUO Y J, NI Y, GUO Y J, HAN L, TANG H . Effects of air humidity and soil water deficit on characteristics of leaf cuticular waxes in alfalfa (Medicago sativa). Acta Ecologica Sinica, 2011,31(18):527-5280. (in Chinese)
[36] LU C M, ZHANG J H . Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Australian Journal of Plant Physiology, 1998(8), 25:883-892.
[37] 杨卫丽, 黄福灯, 曹珍珍, 雷炳婷, 胡东维, 程方民 . 高温胁迫对水稻光合PSⅡ系统伤害及其与叶绿体D1蛋白间关系. 作物学报, 2013,39(6):1060-1068.
doi: 10.3724/SP.J.1006.2013.01060
YANG W L, HUANG F D, CAO Z Z, LEI B T, HU D W, CHENG F M . Effects of high temperature stress on PSII function and its relation to D1 protein in chloroplast thylakoid in rice flag leaves. Acta Agronomica Sinica, 2013,39(6):1060-1068. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01060
[38] FRYER M J, ANDREWS J R, OXBOROUGH K, BLOWERS D A, BAKER N R . Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology, 1998,116:571-580.
doi: 10.1104/pp.116.2.571 pmid: 9490760
[39] LU C M, JIANG G M, WANG B S, KUANG T Y . PhotosystemⅡ photochemistry and photosynthetic pigment composition in salt- adapted halophyte Artimisia anethifolia grown under outdoor conditions. Journal of Plant Physiology, 2003,160(4):403-408.
doi: 10.1078/0176-1617-00839 pmid: 12756920
[40] 山仑, 陈培元 . 旱地农业生理生态基础. 北京: 北京科学技术出版社, 1998: 70-71.
SHAN L, CHEN P Y . The Physiological and Ecological Basis of Dry Land Agriculture. Beijing: Beijing Scientific and Technical Publishers, 1998: 70-71. (in Chinese)
[41] NIZAM U M, MARSHALL D R . Variation in epicuticular wax content in wheat. Euphytica , 1988,38(1):3-9 .
doi: 10.1007/BF00024805
[42] PRIOR S A, PRITCHARD S G, RUNION G B, ROGERS H H, MITCHELL R J . Influence of atmospheric CO2 enrichment, soil N, and water stress on needle surface wax formation in Pinus palustris(Pinaceae). American Journal of Botany, 1997,84(8):1070-1077.
doi: 10.2307/2446150 pmid: 21708662
[43] 戴双, 郭军, 徐文, 赵世杰, 宋建民 . 蜡质组成形态及其合成调控对小麦抗旱性的影响. 植物生理学报, 2016,52(7):979-988.
DAI S, GUO J, XU W, ZHAO S J, SONG J M . Biosynthesis and regulation of cuticular wax and its effects on drought resistance of wheat. Plant Physiology Journal, 2016,52(7):979-988. (in Chinese)
[44] KIM M S, SHIM K B, PARK S H, KIM K S . Changes in cuticular waxes of developing leaves in sesame (Sesamum indicum L.). Journal of Crop Science and Biotechnology, 2009,12(3):161-167.
doi: 10.1007/s12892-009-0119-3
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[6] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[7] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[8] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[9] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[10] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[11] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[12] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[13] ZOU YunQian,LIN ZiZhen,XU RangWei,CHENG YunJiang. Development and Evaluation of a Coating Substitute for Individual Polyethylene Film Packaging of Citrus Fruit [J]. Scientia Agricultura Sinica, 2022, 55(12): 2398-2412.
[14] CuiQing WU,JingXin SUN,PingYi GUO,HongFu WANG,XinHui WU. Effects of Agronomic Managements on Yield and Lodging Resistance of Millet [J]. Scientia Agricultura Sinica, 2021, 54(6): 1127-1142.
[15] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!