Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (14): 2655-2663.doi: 10.3864/j.issn.0578-1752.2018.14.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Light Intensity and Light Quality on Morphological and Photosynthetic Characteristics of Soybean Seedlings

CHENG YaJiao, CHEN JunXu, WANG ZhongLin, FAN YuanFang, CHEN SiYu, LI ZeLin, LIU QinLin, LI ZhongChuan, YANG Feng, YANG WenYu   

  1. College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
  • Received:2018-01-15 Online:2018-07-16 Published:2018-07-16

Abstract: 【Objective】In the maize-soybean intercropping system, the shading by the taller maize crop modifies the light environment experienced by the lower soybean crop in terms of both light intensity and light quality, while these changes were affected by the intercropping configuration and crop architecture. The objective of this study was to provide a theoretical basis of physiological response for light intensity and light quality. 【Method】 The variety of soybean Nandou 12 used as test material, the experiment was conducted in controlled growth chamber by pot method. In this experiment, four treatments were set up, including A1 (normal light + far red light), A2 (weak light + far red light), A3 (weak light), and CK (normal illumination). The morphological and physiological parameters of soybean seedlings were determined. 【Result】When soybean growth under the normal light and the low ratio of red to far red light, compared with CK, the soybean plant height, biomass and net photosynthetic rate of A1 treatment were increased. On the contrary, the root length, root surface area, root volume, carotenoid content and the actual photochemical quantum efficiency of A1 treatment were decreased significantly, but the photochemical quenching coefficient was not significantly different (P>0.05). Compared with A3 treatment, the A2 treatment soybean plant height decreased, stem diameter increased, biomass increased by 9.8%, and chlorophyll a and total chlorophyll content decreased. The chlorophyll b content decreased by 6.48%, the net photosynthetic rate, maximum photochemical quantum yield, non-photochemical quenching, effective photochemical quantum yield of A2 treatment increased significantly, but the root characteristics was not significantly different (P>0.05). Under the invariant light quality and reduced light intensity, compared with A2 treatment, the plant height of A1 treatment soybean decreased significantly, root length, root surface area and root volume increased significantly, biomass increased by 62.87%. The leaf biomass of A1 treatment accounted for 54.96% of the whole plant, while the stem biomass accounted for 52.08%, the chlorophyll a, b, carotenoids and total chlorophyll content increased, the net photosynthetic rate increased by 16.22% and the chlorophyll fluorescence parameters of A2 treatment were not difference (P>0.05). Compared with CK, the A3 treatment soybean plant height increased significantly, while stem diameter, root length, root surface area and root volume decreased significantly. Meanwhile, the biomass decreased significantly by 61.09%, but the biomass of stem was increased significantly under A3 treatment. The A3 treatment accumulation of chlorophyll a, chlorophyll b and carotenoid increased by 29.41%, 4.17% and 41.51%, respectively, the net photosynthetic rate and actual photochemical quantum efficiency decreased significantly (P<0.05). 【Conclusion】 The results showed that light intensity directly influences the soybean morphogenesis and biomass accumulation. The low ratio of red to far red light could promote the photosynthetic rate and the substance accumulation of soybean.

Key words: soybean, light intensity, light quality, morphological characteristics, photosynthetic characteristics

[1]    赵景云, 刘志强, 王建立. 浅谈中国大豆种业发展现状. 中国种业, 2017(5): 9-10.
Zhao J Y, Liu Z Q, Wang J L. On the development status of soybean seed industry in China. China Seed Industry, 2017(5): 9-10.(in Chinese)
[2]    王威, 吴领祖, 盛林霞, 黄金根. 国内大豆加工产业现状及对策. 现代食品, 2017(1): 55-57.
Wang W, Wu L Z, Sheng L X, Huang J G. Current situation and countermeasures of soybean processing industry in China. Modern Food, 2017(1): 55-57. (in Chinese)
[3]    杨文钰, 雍太文, 任万军. 发展玉米套种大豆,振兴大豆产业. 大豆科学, 2008, 27(1): 1-7
Yang W Y, Yong T W, Ren W J. Develop relay—planting soybean, revitalize soybean industry. Soybean Science, 2008, 27(1): 1-7. (in Chinese)
[4]    Yang F, Wang X C, Liao D P, Lu F, Gao R C, Liu W G, Yong T W, Wu X L, Du J B, Liu J, Yang W. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 2015, 107(1): 296-304.
[5]    Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red: far-red ratio. Field Crops Research, 2014, 155: 245-253.
[6]    赵文涛, 周冀衡, 邱尧, 李强, 杨未. 光照强度对烟苗叶绿素含量、硝酸还原酶活性及根系活力的影响. 湖南农业科学, 2012(15): 31-33.
Zhao W T, Zhou J H, Qiu Y, Li Q, Yang W. Effects of illumination intensity on chlorophyll content and activities of nitrate reductase and root of tobacco seedlings. Hunan Agricultural Sciences, 2012(15): 31-33. (in Chinese)
[7]    任梦露, 刘卫国, 刘婷, 杜勇利, 邓榆川, 邹俊林, 袁晋, 杨文钰. 荫蔽胁迫下大豆茎秆形态建成的转录组分析. 作物学报, 2016, 42(9): 1319-1331.
Ren M L, Liu W G, Liu T, Du Y L, Deng Y C, Zou J L, Yuan J, Yang W Y. Transcriptome analysis of stem morphogenesis under shade stress in soybean. Acta Agronomica Sinica, 2016, 42(9): 1319-1331. (in Chinese)
[8]    刘卫国, 蒋涛, 佘跃辉, 杨峰, 杨文钰. 大豆苗期茎秆对荫蔽胁迫响应的生理机制初探. 中国油料作物学报, 2011, 33(2): 141-146.
Liu W G, Jiang T, She Y H, Yang F, Yang W Y. Preliminary study on physiological response mechanism of soybean (Glycine max) stem to shade stress at seedling stage. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146. (in Chinese)
[9]    龚万灼, 吴雨珊, 雍太文, 刘卫国, 杨峰, 杨文钰. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响.中国油料作物学报, 2015, 37(4): 475-480.
Gong W Z, Wu Y S, Yong T W, Liu W G, Yang F, Yang W Y. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 475-480. (in Chinese)
[10]   梦露, 刘卫国, 刘小明, 方萍, 杨文钰. 荫蔽信号对大豆幼苗生长和光合特性的影响. 中国生态农业学报, 2016, 24(4): 499-505.
Ren M L, Liu W G, Liu X M, Fang P, Yang W Y. Effects of shading signal on growth and photosynthetic characteristics of soybean seedlings. Chinese Journal of Eco-Agriculture, 2016, 24(4): 499-505. (in Chinese)
[11]   范元芳, 杨峰, 何知舟, 王锐, 刘沁林, 袁小琴, 雍太文, 武晓玲, 杨文钰. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016, 24(5): 608-617.
Fan Y F, Yang F, He Z Z, Wang R, Liu Q L, Yuan X Q, Yong T W, Wu X L, Yang W Y. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean- maize intercropping system. Chinese Journal of Eco- Agriculture, 2016, 24(5): 608-617. (in Chinese)
[12]   于晓波, 罗玲, 曾宪堂, 苏本营, 龚万灼, 雍太文, 杨文钰, 张明, 吴海英. 套作弱光胁迫对大豆苗期根系形态和生理活性的影响. 中国油料作物学报, 2015, 37(2): 185-193.
Yu X B, Luo L, Zeng X T, Su B Y, Gong W Z, Yong T W, Yang W Y, Zhang M R, Wu H Y. Response of roots morphology and physiology to shading in maize- soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2015, 37(2): 185-193. (in Chinese)
[13]   曹刚, 张国斌, 郁继华, 马彦霞. 不同光质LED光源对黄瓜苗期生长及叶绿素荧光参数的影响. 中国农业科学, 2013, 46(6): 1297-1304.
Cao G, Zhang G B, Yu J H, Ma Y X. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultura Sinica, 2013, 46(6): 1297-1304. (in Chinese)
[14]   闫萌萌, 王铭伦, 王洪波, 王月福, 赵长星. 光质对花生幼苗根系生长与根系活力的影响. 农学学报, 2013, 3(8): 17-20.
Yan M M, Wang M L, Wang H B, Wang Y F, Zhao C X. Effect of light quality on the growth and vitality of peanut seedling root system. Journal of Agriculture, 2013, 3(8): 17-20. (in Chinese)
[15]   曹凯. 红光与远红光对番茄生长发育的影响及开花相关基因功能研究[D]. 杨凌: 西北农林科技大学, 2016.
CAO K. A research of red light and far-red light on tomato growth and flowering-related genes[D]. Yangling: Northwest A&F University, 2016. (in Chinese)
[16]   张继波, 杨再强, 张静, 彭晓丹, 张婷华. 红光与远红光比值对切花菊神马发育和外观品质的影响. 生态学杂志, 2012, 31(4): 816-822.
Zhang J B, Yang Z Q, Zhang J, Peng X D, Zhang T H. Effects of red/far red light ratio on the development and appearance quality of cut chrysanthemum cultivar ‘Jingba’ in greenhouse. Chinese Journal of Ecology, 2012, 31(4): 816-822. (in Chinese)
[17]   朱静. 不同R/FR值对温室切花菊光合特性及衰老特性的影响[D]. 南京: 南京信息工程大学, 2013.
ZHU J. Effects of red/far red ratio on photosynthetic characteristics and aging characteristics of cut chrysanthemum in greenhouse[D]. Nanjing: Nanjing University of Information Science & Technology, 2013. (in Chinese)
[18]   崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2013, 47(8): 1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybeans in different maize/soybean relay strip intercropping  systems. Chinese Agricultural Sciences, 2013, 47(8): 1489-1501. (in Chinese)
[19]   Hertel C, Leuchner M, Rötzer T, Menzel a. Assessing stand structure of beech and spruce from measured spectral radiation properties and modeled leaf biomass parameters. Agricultural & Forest Meteorology, 2012, 165: 82-91.
[20]   杨峰, 娄莹, 刘沁林, 范元芳, 刘卫国, 雍太文, 王小春, 杨文钰. 玉米行距配置对套作大豆生物量、根系伤流及养分的影响. 中国农业科学, 2016, 49(20): 4056-4064.
Yang F, Lou Y, Liu Q L, Fan Y F, Liu W G, Yong T W, Wang X C, Yang W Y. Effects of maize row spacing on biomass, root bleeding sap and nutrient of soybean in relay strip intercropping systems. Scientia Agricultura Sinica, 2016, 49(20): 4056-4064. (in Chinese)
[21]   Arnon D I. Copper enzymes in isolated chloroplasts. poly- phenol oxidase in beta vulgaris. Plant Physiology, 1949, 24(1): 1-15.
[22]   舒展, 张晓素, 陈娟, 陈根云, 许大全. 叶绿素含量测定的简化. 植物生理学报, 2010, 46(4): 399-402.
Shu Z, Zhang X S, Chen J, Chen G Y, Xu D Q. The simplification of chlorophyll content measurement. Plant Physiology Communications, 2010, 46(4): 399-402. (in Chinese)
[23]   苏本营, 宋艳霞陈圣宾, 杨文钰. 大豆幼苗对套作玉米遮阴环境的光合生理生态响应. 生态学报, 2015, 35(10): 3298-3308.
Su B Y, Song Y X, Chen S B, Yang W Y. Photosynthetic responses of soybean (Glycine max) seedlings to shading caused by maize in an intercropping system. Acta Ecologica Sinica, 2015, 35(10): 3298-3308. (in Chinese)
[24]   李瑞, 文涛, 唐艳萍, 孙歆, 夏超. 遮阴对大豆幼苗光合和荧光特性的影响. 草业学报, 2014, 23(6): 198-206.
Li R, Wen T, Tang Y P, Sun X, Xia C. Effects of shading on photosynthesis and chlorophyll fluorescence characteristics of soybean. Acta Prataculturae Sinica, 2014, 23(6): 198-206. (in Chinese)
[25]   Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1996, 1(1): 21-26.
[26]   Hu W H, Yu J Q. Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves. Acta Horticulturae Sinica, 2001, 28: 41-46.
[27]   高仁才, 杨峰, 廖敦平, 苏本营, 崔亮, 邓传蓉, 杨文钰. 行距配置对套作大豆冠层光环境及其形态特征和产量的影响. 大豆科学, 2015, 34(4): 611-615.
Gao R C, Yang F, Liao D P, Su B Y, Cui L, Deng C R, Yang W Y. Effects of different row spacings of maize on light environmentmorphological characteristics and yield of soybeans in a relay intercropping system. Soybean Science, 2015, 34(4): 611-615. (in Chinese)
[28]   Park Y, Runkle E S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental & Experimental Botany, 2017, 136: 41-49.
[29]   Kurepin L V, Walton L J, Hayward A, Neil Emery R J, Reid D V, Chinnappa c c. Shade light interaction with salicylic acid in regulating growth of sun (alpine) and shade (prairie) ecotypes of Stellaria longipes. Plant Growth Regulation, 2012, 68(1): 1-8.
[30]   Casal J J. Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 64(1): 403-427.
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[7] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[8] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[9] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[10] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[11] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[12] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[13] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[14] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[15] WANG ShiYa,ZHENG DianFeng,XIANG HongTao,FENG NaiJie,LIU Ya,LIU MeiLing,JIN Dan,MOU BaoMin. Damage of AsA-GSH Cycle of Soybean Leaves Under Waterlogging Stress at Initial Flowing Stage and the Mitigation Effect of Uniconazole [J]. Scientia Agricultura Sinica, 2021, 54(2): 271-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!