Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1855-1867.doi: 10.3864/j.issn.0578-1752.2018.10.005

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Differences of Ear Characters in Maize and Their Effects on Grain Dehydration

LuLu LI(), Bo MING(), RuiZhi XIE, KeRu WANG, Peng HOU, ShaoKun LI()   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
  • Received:2017-09-12 Accepted:2018-01-16 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 The high grain dehydration rate and the low grain moisture content at harvest are two ear characters, which can be established for maize mechanical grain harvesting. Ear characters are decided by genes and have close relationship with grain dehydration. This internal relationship and the key ear characters that can characterize the traits of grain dehydration remain unknown, which are of great significance for breeding and screening of suitable varieties. 【Method】 The report researched on a total of 22 main cultivars of summer maize in HuangHuaiHai plain, and their ear characters were divided into 41 parameters covering bract, grain, cob and ear-pedicel. In 2015 and 2016, these parameters were measured and were used in correlation analysis with five grain parameters describing the dehydration rate, including the grain dehydration rate before physiological maturity (GDRbpm), the grain dehydration rate after physiological maturity (GDRapm), the total grain dehydration rate (GTDR), the grain moisture content at physiological maturity (GMCpm) and at harvest (GMCh). 【Result】 These 41 parameters were significantly different between the 22 cultivars, and there were some parameters significantly linked to grain dehydration. The bract length had a significantly negative relationship with GDRapm and a significantly positive relationship with GMCh. The value of “bract length/ear length” had a significantly negative correlation with GDRapm. The ear angle was positively correlated to GTDR at a significant level. The cob moisture content at physiological maturity had significantly positive relationships with GMCpm and GMCh. The grain number per ear was positively correlated to GDRbpm and GTDR at a significant level. The value of “ear length/grain number per row” had significantly positive relationships with GDRbpm, GDRapm and GTDR and had a significantly negative relationship with GMCh. The 100-grain dry weight at physiological maturity was negatively correlated to the grain moisture content at the significant level. There were no significant correlations between the other ear parameters and the five grain dehydration parameters.【Conclusion】 The current cultivars had different ear characters in HuangHuaiHai plain. These parameters contributed to grain dehydration rate, including the shorter bract, the lower moisture content of cob at physiological maturity, the larger ear angle, the fewer grain number per ear, and the smaller grain, which could be used in breeding and screening of mechanical grain harvest cultivars.

Key words: maize, grain dehydration, bract, grain, cob, ear-pedicel

Table 1

Information of maize cultivars"

序号 Number 品种 Cultivar 种植年度 Year 亲本 Parent
1 郑单958 ZD958 2015、2016 郑58×昌7-2 Zheng58×Chang7-2
2 先玉335 XY335 2015、2016 PH6WC×PH4CV
3 农华101 NH101 2015、2016 NH60×S121
4 农华816 NH816 2015、2016 7P402×B8328
5 京农科728 JNK728 2015、2016 京MC01×京2416 Jing MC01×Jing 2416
6 中单909 ZD909 2015、2016 郑58×HD586 Zheng58×HD586
7 裕丰303 YF303 2015 CT1669×CT3354
8 联创808 LC808 2015 CT3566×CT3354
9 中科玉505 ZKY505 2015 CT1668×CT3354
10 禾田1号 HT1H 2015 B10194×合344 B10194×He344
11 宁玉721 NY721 2015 宁晨26×宁晨137 Ningchen26×Ningchen137
12 华美1号 HM1H 2016 HF12202×HM12111
13 真金323 ZJ323 2016 H351×Z962
14 新单58 XD58 2016 新09美×新3782 Xin09mei×Xin3782
15 新单65 XD65 2016 新026×新3782 Xin026×Xin3782
16 辽单575 LD575 2016 辽3358×辽3258 Liao3358×Liao3258
17 锦华318 JH318 2016 7P402×L9097
18 锦华207 JH207 2016 京X005×京147 Jing X005×Jing147
19 金通152 JT152 2016 NY60×B8328
20 迪卡517 DK517 2016 D1798Z×HCL645
21 陕单636 SD636 2016 KA103×KB043
22 丰垦139 FK139 2016 K334×K454

Table 2

Ear parameters and their abbreviations"

序号 Ordinal number 指标 Parameter 简称 Abbreviation
1 苞叶层数Bract number BN
2 苞叶最大厚度Max thickness of bract (mm) BTmax
3 苞叶最小厚度Min thickness of bract (mm) BTmin
4 苞叶面积Bract area (m2) BA
5 苞叶面积/果穗表面积 Bract area/ear area BA/EA
6 苞叶长度Bract length (cm) BL
7 苞叶长度/果穗长度 Bract length/ear length BL/EL
8 比苞叶重Bract relative weight (g·m-2) BRW
9 苞叶蓬松度 Fluffy degree of bract BFD
10 苞叶生理成熟期干重Bract dry weight at physiological maturity (g) BDWpm
11 苞叶生理成熟期鲜重Bract fresh weight at physiological maturity (g) BFWpm
12 苞叶生理成熟期含水率Bract moisture content at physiological maturity (%) BMCpm
13 苞叶生理成熟期含水量Bract moisture at physiological maturity (g) BMpm
14 苞叶最大鲜重Max fresh weight of bract (g) BFWmax
15 苞叶最大含水量Max moisture of bract (g) BMmax
16 苞叶最大含水率Max moisture content of bract (%) BMCmax
17 苞叶最小含水率Min moisture content of bract (%) BMCmin
18 苞叶脱水速率Dehydration rate of bract (%·(℃·d)-1) BDR
19 果穗长度Ear length (cm) EL
20 果穗直径Ear diameter (cm) ED
21 穗轴直径Cob diameter (cm) CD
22 果穗夹角Ear angle (°) EA
23 果穗体积Ear volume (cm3) EV
24 穗轴体积Cob volume (cm3) CV
25 穗轴最大含水量Max moisture of cob (g) CMmax
26 穗轴最大含水率Max moisture content of cob (%) CMCmax
27 穗轴生理成熟期含水量Cob moisture at physiological maturity (g) CMpm
28 穗轴生理成熟期含水率Cob moisture content at physiological maturity (%) CMCpm
29 穗轴脱水速率Dehydration rate of cob (%·(℃·d)-1) CDR
30 穗柄长度Ear-pedicel length (cm) EPL
31 穗柄最大含水率Max moisture content of ear-pedicel (%) EPMCmax
32 穗柄生理成熟期含水量Ear-pedicel moisture at physiological maturity (g) EPMpm
33 穗柄生理成熟期含水率Ear-pedicel moisture content at physiological maturity (%) EPMCpm
34 穗柄脱水速率Dehydration rate of ear-pedicel (%·(℃·d)-1) EPDR
35 穗粒数 Grain number per ear GNPE
36 穗行数 Rows per ear RPE
37 籽粒长度Grain length (mm) GL
38 果穗周长/穗行数Ear perimeter/ rows per ear (mm) EP/RPE
39 果穗长度/行粒数Ear length/grain number per row (mm) EL/GNPR
40 单粒所占空间Space of single grain (cm3) SSG
41 生理成熟期百粒干重100-grain dry weight at physiological maturity (g) 100GDWpm
42 生理成熟期籽粒含水率Grain moisture content at physiological maturity (%) GMCpm
43 收获期籽粒含水率Grain moisture content at harvest (%) GMCh
44 生理成熟前籽粒脱水速率Grain dehydration rate before physiological maturity (%·(℃·d)-1) GDRbpm
45 生理成熟后籽粒脱水速率Grain dehydration rate after physiological maturity (%·(℃·d)-1) GDRapm
46 籽粒总脱水速率Total dehydration rate of grain (%·(℃·d)-1) GTDR

Table 3

Bract characters of cultivars"

品种 年份 苞叶层数 苞叶最大厚度 苞叶最小厚度 苞叶面积 苞叶面积/果穗 苞叶长 苞叶长度/果穗长度 苞叶 比苞叶重 苞叶生理成熟期 苞叶生理成熟期 苞叶生理成熟期 苞叶生理成熟期 苞叶最大鲜重 苞叶最大含水量 苞叶最大含水率 苞叶最小含水率 苞叶脱水
Cultivar Year BN BTmax (mm) BTmin (mm) BA 表面积 BL BL/EL 蓬松度 BRW (g·m-2) 干重 鲜重 含水率 含水量 BFWmax (g) BMmax (g) BMCmax BMCmin 速率
(m2) BA/EA (cm) FD BDWpm (g) BFWpm (g) BMCpm (%) BMpm (g) (%) (%) BDR (%·(℃·d)-1)
XY335 ### 10±0.7 0.15±2.1 5.2±0.5 22.3±1.1 1.2±0.1 1.44±0.1 70.6±5.7 12.63±1.5 13.90±1.2 9.33±4.7 1.27±0.5
ZD958 ### 9±0.9 0.17±2.5 6.2±0.7 25.0±1.2 1.5±0.1 1.20±0.1 49.8±6.0 8.93±2.1 9.52±2.2 6.34±1.7 0.59±0.2
NH101 ### 9±0.9 0.15±3.0 4.7±0.9 23.7±1.2 1.3±0.1 1.60±0.2 62.8±4.5 10.36±1.9 11.55±1.8 11.57±3.9 1.32±0.5
JNK728 ### 9±1.2 0.19±9.5 6.9±3.5 24.2±0.8 1.4±0.1 1.33±0.2 60.5±2.7 11.40±1.0 13.44±1.4 14.95±5.2 2.04±0.8
NH816 ### 10±0.6 0.17±2.0 5.4±0.5 26.0±1.3 1.3±0.1 1.44±0.2 60.2±5.2 10.21±1.0 14.69±2.0 30.12±4.9 4.48±1.3
ZD909 ### 8±0.7 0.13±1.9 4.2±0.4 25.4±1.5 1.3±0.1 1.29±0.1 69.3±8.5 8.96±1.7 9.71±1.9 7.56±2.3 0.74±0.3
YF303 ### 11±1.1 0.20±3.3 6.4±0.6 25.0±1.6 1.3±0.1 1.45±0.1 76.6±13.5 16.21±2.6 20.41±2.8 19.24±3.7 4.20±1.2
LC808 ### 10±1.0 0.15±3.0 4.9±0.7 24.1±1.9 1.3±0.1 1.41±0.2 64.7±6.0 14.33±4.0 16.45±4.8 12.66±2.1 2.12±1.0
ZKY505 ### 11±0.7 0.18±2.7 5.8±0.6 22.8±1.7 1.2±0.1 1.34±0.1 72.4±8.6 10.66±2.6 11.71±3.0 8.75±1.7 1.05±0.4
HT1H ### 10±1.7 0.12±1.1 4.8±0.6 21.6±1.1 1.2±0.1 1.48±0.1 69.6±8.4 9.69±2.0 12.45±2.7 20.78±3.1 2.76±0.9
NY721 ### 8±0.6 0.12±2.0 3.8±0.4 23.7±1.6 1.3±0.1 1.44±0.2 83.3±9.6 9.99±1.3 12.15±1.4 17.78±4.4 2.16±0.6
XY335 ### 9±0.8 3.62±0.6 1.55±0.4 0.17±2.6 6.5±1.0 24.5±1.0 1.4±0.2 77.8±12.4 10.77±1.6 14.41±2.0 25.29±3.7 3.65±0.7 67.70±9.9 53.75±8.0 79 14 0.074
ZD958 ### 9±0.8 3.86±0.2 0.92±0.2 0.18±2.3 7.0±0.7 25.4±0.2 1.5±0.1 63.1±12.0 8.83±1.6 10.30±1.3 14.34±2.5 1.47±0.3 72.20±10.7 59.61±8.6 81 16 0.109
NH101 ### 10±0.8 4.19±0.7 1.34±0.3 0.15±1.6 5.6±0.3 24.9±0.9 1.4±0.1 63.9±9.1 9.53±1.3 13.90±1.1 31.56±5.6 4.37±0.7 80.19±16.6 64.19±12.9 79 16 0.085
JNK728 ### 10±0.7 4.55±0.2 1.56±0.3 0.16±1.8 7.7±0.5 25.2±1.3 1.7±0.1 58.2±4.0 9.79±1.3 11.18±1.4 12.44±0.6 1.39±0.2 89.09±5.9 74.07±6.0 80 13 0.128
NH816 ### 10±0.6 4.40±0.3 1.69±0.2 0.17±2.5 6.1±0.4 27.2±0.8 1.4±0.1 66.5±6.3 9.29±2.6 12.58±4.7 24.37±6.8 3.28±2.3 75.58±7.0 61.75±5.6 82 16 0.082
ZD909 ### 9±0.8 3.84±0.6 0.99±0.1 0.13±2.3 4.8±0.8 24.9±1.0 1.4±0.1 59.8±5.7 7.92±0.6 9.74±1.1 18.24±5.5 1.82±0.7 67.94±8.4 55.20±6.9 80 18 0.099
XD58 ### 11±0.7 5.32±0.9 1.38±0.1 0.13±2.1 5.8±0.5 24.2±1.3 1.5±0.1 59.2±7.6 8.14±0.8 11.51±1.2 29.16±4.0 3.37±0.7 81.78±9.6 67.10±7.4 80 15 0.093
XD65 ### 10±0.9 4.58±0.2 1.61±0.1 0.14±1.5 7.1±0.9 23.4±0.6 1.6±0.2 65.9±6.6 9.46±0.6 11.36±1.2 16.32±6.3 1.90±0.9 86.17±5.9 70.21±5.2 80 15 0.105
FK139 ### 11±1.2 4.37±0.1 1.46±0.3 0.16±4.0 8.2±1.1 26.3±1.2 1.7±0.2 77.3±9.6 10.32±1.3 14.79±2.6 29.73±4.2 4.48±1.5 65.54±8.6 51.46±5.7 77 15 0.094
DK517 ### 9±0.7 3.23±0.1 1.04±0.1 0.13±2.3 5.0±0.4 23.9±1.6 1.3±0.1 52.4±3.5 6.33±0.9 7.96±1.2 20.49±2.2 1.63±0.3 51.13±2.1 41.45±1.8 79 16 0.088
SD636 ### 10±0.8 4.53±0.4 1.53±0.3 0.14±1.9 6.0±0.5 25.9±1.5 1.5±0.1 75.6±14.6 8.66±1.4 10.19±1.6 15.08±2.2 1.54±0.3 71.66±10.3 59.92±7.5 81 16 0.091
JH207 ### 10±1.0 4.25±0.7 1.53±0.1 0.13±2.0 5.5±0.5 23.8±1.1 1.4±0.2 63.8±6.9 8.36±0.7 10.17±0.9 17.84±1.2 1.82±0.2 77.78±13.5 61.40±10.6 79 16 0.071
LD575 ### 11±1.0 4.97±0.4 1.93±0.2 0.17±1.5 7.0±0.5 24.9±0.9 1.6±0.1 71.7±9.9 12.32±2.1 15.22±4.5 16.59±11.0 2.90±2.8 87.82±11.9 70.81±9.6 78 16 0.081
HM1H ### 9±0.7 4.41±0.7 1.45±0.2 0.12±1.4 4.8±0.4 25.9±0.7 1.5±0.1 68.6±3.6 10.56±2.8 15.84±6.8 29.73±10.6 5.27±4.0 66.10±4.0 53.39±3.3 79 14 0.08
JH318 ### 10±0.6 4.00±0.4 1.44±0.2 0.12±0.9 5.3±0.8 22.3±0.7 1.4±0.2 67.9±3.7 8.28±0.8 11.70±1.6 28.96±2.7 3.42±0.7 57.56±4.8 44.88±7.3 78 19 0.069
JT152 ### 11±0.8 4.80±0.2 1.52±0.1 0.15±2.7 6.0±0.4 26.9±0.9 1.5±0.1 59.2±7.5 11.50±1.8 14.33±2.7 19.47±2.5 2.84±0.9 82.91±3.7 66.77±2.6 81 17 0.072
ZJ323 ### 8±0.7 4.29±0.2 1.32±0.2 0.12±2.2 4.6±0.4 27.0±2.1 1.5±0.1 72.0±4.5 7.72±1.2 8.28±1.3 6.82±0.7 0.56±0.1 74.57±8.8 59.01±7.2 80 15 0.075
变化范围 #### 3.23-5.32 0.92-1.93 0.12-0.20 3.8-8.2 21.6-27.2 1.2-1.7 1.20-1.60 49.8-83.3 6.33-14.33 7.96-20.41 6.34-31.56 0.56-5.27 51.13-89.09 41.45-74.07 77.09-81.35 12.90-18.65 0.069-0.128
Variation range
样本量(n) 1 000 85 85 195 280 195 280 110 195 184 184 184 184 85 85
Sample number
FF value 37.49** 5.76** 7.92** 3.98** 14.09** 8.83** 15.61** 5.28** 7.47** 8.72** 7.91** 20.53** 9.04** 6.69** 7.44**

Table 6

F value in variance analysis of different characters in years"

序号
Ordinal number
指标
Parameter
年份
Year
品种
Cultivar
年份×品种
Year×cultivar
样本量(n)
Sample number
1 苞叶层数BN 15.23** 25.37** 10.59** 365
2 苞叶面积BA 0.02 3.08* 0.50 90
3 苞叶面积/果穗表面积 BA/EA 15.10** 14.32** 0.25 120
4 苞叶长度BL 13.51** 12.59** 2.18 90
5 苞叶长度/果穗长度 BL/EL 45.02** 19.18** 4.35** 120
6 比苞叶重BRW 3.13 10.49** 4.65** 90
7 苞叶生理成熟期干重BDWpm 8.77** 7.19** 0.50 84
8 苞叶生理成熟期鲜重BFWpm 0.07 11.54** 2.62* 84
9 苞叶生理成熟期含水率BMCpm 64.94** 28.69** 18.60** 84
10 苞叶生理成熟期含水量BMpm 23.27** 20.98** 12.43** 84
11 果穗长度EL 10.89** 14.96** 1.63 120
12 果穗直径ED 83.59** 7.29** 1.77 120
13 穗轴直径CD 28.69** 31.29** 0.79 120
14 果穗夹角EA 15.96** 13.27** 3.06* 120
15 果穗体积EV 63.55** 6.39** 1.48 120
16 穗轴体积CV 5.94* 15.13** 0.97 120
17 穗轴生理成熟期含水量CMpm 2.13 14.48** 4.30** 84
18 穗轴生理成熟期含水率CMCpm 6.87* 30.87** 1.42 84
19 穗柄生理成熟期含水量EPMpm 5.09* 22.09** 1.93 84
20 穗柄生理成熟期含水率EPMCpm 14.38** 5.01** 0.69 84
21 穗粒数 GNPE 3.51 16.66** 5.01** 240
22 穗行数 RPE 0.24 8.07** 1.07 240
23 籽粒长度GL 139.72** 3.69** 2.35* 120
24 果穗周长/穗行数EP/RPE 28.94** 8.87** 1.35 120
25 果穗长度/行粒数EL/GNPR 0.27 8.78** 3.08* 120
26 单粒所占空间SSG 76.5** 1.86 0.82 120
27 生理成熟期百粒干重100GDWpm 0.86 5.68** 1.52 84
28 生理成熟期籽粒含水率GMCpm 0.94 7.76** 9.7** 84
29 收获期籽粒含水率GMCh 2.63 31.68** 2.71* 84

Fig. 1

Correlation analysis of ear characters and dehydration parameters in maize"

[1] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50(11): 2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
WANG K R, LI S K.Progresses in research on grain broken rate by mechanical grain harvesting.Scientia Agricultura Sinica, 2017, 50(11): 2018-2026. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[2] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11): 2027-2035.
WANG K R, LI S K.Analysis of influencing factors on kernel dehydration rate of maize hybrids.Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. (in Chinese)
[3] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K.Current status of maize mechanical grain harvesting and its relationship with grain moisture content.Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[4] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11): 2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
LI L L, LEI X P, XIE R Z, WANG K R, HOU P, ZHANG F L, LI S K.Analysis of influential factors on mechanical grain harvest quality of summer maize.Scientia Agricultura Sinica, 2017, 50(11): 2044-2051. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.010
[5] CAVALIERI A J, SMITH O S.Grain filling and field drying of a set of maize hybrid released from 1930 to 1982.Crop Science, 1985, 25(5): 856-860.
doi: 10.2135/cropsci1985.0011183X002500050031x
[6] KANG M S, ZUBER M S, COLBERT T R, COLBERT T R, HORROCKS R D.Effect of certain agronomic traits on and relationship between rates of grain moisture reduction and grain fill during filling period in maize.Field Crop Research, 1986, 14(4): 339-347.
doi: 10.1016/0378-4290(86)90068-7
[7] KANG M S, ZUBER M S.Combining ability for grain moisture, husk moisture, and maturity in maize with yellow and white endosperms.Crop Science, 1989, 29(3): 689-692.
doi: 10.2135/cropsci1989.0011183X002900030030x
[8] 闫淑琴, 苏俊, 李春霞, 龚士琛, 宋锡章, 李国良, 扈光辉, 王明泉, 贲利. 玉米籽粒灌浆、脱水速率的相关与通径分析.玉 黑龙江农业科学, 2007(4): 1-4.
YAN S Q, SU J, LI C X, GONG S C, SONG X Z, LI G L, HU G H, WANG M Q, BEN L.Correlation analysis of dry down and grain filling rate in maize.Heilongjiang Agricultural Sciences, 2007(4): 1-4. (in Chinese)
[9] CRANE P L, MILES S R, NEWMAN J E.Factors associated with varietal differences in rate of field drying in corn.Agronomy Journal, 1959, 51(6): 318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[10] HICKS D R, GEADELMANN J L, PETERSON R H.Drying rates of frosted maturing maize.Agronomy Journal, 1976, 68(3): 452-455.
doi: 10.2134/agronj1976.00021962006800030004x
[11] 张林, 张宝石, 王霞, 王振华. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009, 40(10): 9-12.
doi: 10.3969/j.issn.1005-9369.2009.10.003
ZHANG L, ZHANG B S, WANG X, WANG Z H.Correlation analysis of agronomic characters and grain moisture in maize harvest time.Journal of Northeast Agricultural University, 2009, 40(10): 9-12. (in Chinese)
doi: 10.3969/j.issn.1005-9369.2009.10.003
[12] PURDY J D, CRANE P L.Inheritance of drying rate in “mature” corn (Zea mays L.). Crop Science, 1967, 7(4): 294-297.
doi: 10.2135/cropsci1967.0011183X000700040003x
[13] MISEVIC D, ALEXANDER D E.Twenty-four cycles of phenotypic recurrent selection for percent oil in maize. 1. per se and test-cross performance.Crop Science, 1989, 29(2): 320-324.
doi: 10.2135/cropsci1989.0011183X002900020018x
[14] 孙生林, 张树光, 薛继生, 张天英, 高树仁, 向春阳. 玉米粒含水量与果穗性状相关性的研究. 黑龙江八一农垦大学学报, 1993, 7(1): 12-17.
SUN S L, ZHANG S G, XUE J S, ZHANG T Y, GAO S R, XIANG C Y.Study on correlation between kernel dehydration and ear characters of maize.Journal of Heilongjiang August First Land Reclamation University, 1993, 7(1): 12-17. (in Chinese)
[15] 张树光, 冯学民, 高树仁, 孙生林. 玉米成熟期籽粒含水量与果穗性状的关系. 中国农学通报, 1994, 10(2): 15-17.
ZHANG S G, FENG X M, GAO S R, SUN S L.Study on kernel moisture content and ear characters of maize hybrids with different maturity time.Chinese Agricultural Science Bulletin, 1994, 10(2): 15-17. (in Chinese)
[16] 李艳杰, 史纪明, 鞠成梅, 朱晶. 玉米子粒水分与品种性状相关性研究初报. 玉米科学, 2000, 8(4): 37-38.
doi: 10.3969/j.issn.1005-0906.2000.04.012
LI Y J, SHI J M, JU C M, ZHU J.Preliminary study on the correlation between grain moisture content and cultivar traits in maize.Journal of Maize Sciences, 2000, 8(4): 37-38. (in Chinese)
doi: 10.3969/j.issn.1005-0906.2000.04.012
[17] 吕香玲, 兰进好, 张宝石. 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006, 34(2): 48-52.
doi: 10.3321/j.issn:1671-9387.2006.02.011
LÜ X L, LAN J H, ZHANG B S.Study on ear moisture loss rate in maize.Journal of Northwest A&F University(Natural Science Edition), 2006, 34(2): 48-52. (in Chinese)
doi: 10.3321/j.issn:1671-9387.2006.02.011
[18] 张春荣, 岳竞之, 张莉, 郜永强, 孙迷平. 玉米子粒含水量与穗部性状的相关分析. 玉米科学, 2007, 15(1): 59-61.
ZHANG C R, YUE J Z, ZHANG L, GAO Y Q, SUN M P.Correlation analysis of kernel water content and ear characteristics of maize.Journal of Maize Sciences, 2007, 15(1): 59-61. (in Chinese)
[19] 张立国, 范骐骥, 陈喜昌, 李波, 张宇, 修丽丽. 玉米生理成熟后籽粒脱水速率与主要农艺性状的相关分析. 黑龙江农业科学, 2012(3): 1-5.
doi: 10.3969/j.issn.1002-2767.2012.03.001
ZHANG L G, FAN Q J, CHEN X C, LI B, ZHANG Y, XIU L L.Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity..Heilongjiang Agricultural Sciences, 2012(3): 1-5. (in Chinese)
doi: 10.3969/j.issn.1002-2767.2012.03.001
[20] CROSS H Z.A selection procedure for ear drying-rates in early maize.Euphytica, 1985, 34(2): 409-418.
doi: 10.1007/BF00022936
[21] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 51(10): 1878-1889.
LI L L, MING B, GAO S, XIE R Z, HOU P, WANG K R, LI S K.Study on grain dehydration characters of summer maize and its relationship with grain filling.Scientia Agricultura Sinica, 51(10): 1878-1889. (in Chinese)
[22] 胡玉琪, 廖晓海. 玉米叶形系数研究. 作物学报, 1986, 12(1):66, 71-72.
HU Y Q, LIAO X H. A study on the coefficient of leaves shape of maize.Acta Agronomica Sinica, 1986, 12(1):66, 71-72. (in Chinese)
[23] 刘镕源, 王纪华, 杨贵军, 黄文江, 李伟国, 常红, 李小文. 冬小麦叶面积指数地面测量方法比较. 农业工程学报, 2011, 27(3): 220-224.
LIU R Y, WANG J H, YANG G J, HUANG W J, LI W G, CHANG H, LI X W.Comparison of ground-based LAI measuring methods on winter wheat.Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 220-224. (in Chinese)
[24]
[25] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆. 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016, 24(2): 57-61, 71.
LI L L, XIE R Z, FAN P P, LEI X P, WANG K R, HOU P, LI S K.Study on dehydration in kernel between Zhengdan958 and Xianyu335.Journal of Maize Sciences, 2016, 24(2): 57-61, 71. (in Chinese)
[26] 何启平, 董树亭, 高荣岐. 玉米果穗维管束系统的发育及其与穗粒库容的关系. 作物学报, 2005, 31(8): 995-1000.
doi: 10.3321/j.issn:0496-3490.2005.08.006
HE Q P, DONG S T, GAO R Q.Relationship between development of spike vascular bundle and sink capacity of ear and kernel in maize (Zea mays L.). Acta Agronomica Sinica, 2005, 31(8): 995-1000. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2005.08.006
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[8] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[9] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[10] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[11] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[12] ZHAO WeiHong, HAN WenXiong, YANG Bo, MENG WeiKang, CHAI HaiLiang, MA YiMin, ZHANG ZhanSheng, WANG LiFeng, WANG Yan, WANG MingYuan, ZHANG Shan, DING YuLin, WANG JinLing, JIRINTAI Sulijid, WANG FengLong, ZHAO Li, LIU YongHong. Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia [J]. Scientia Agricultura Sinica, 2023, 56(6): 1204-1214.
[13] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[14] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[15] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!