Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (6): 1204-1214.doi: 10.3864/j.issn.0578-1752.2023.06.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Isolation and Genotyping of Mycobacterium avium subsp. paratuberculosis from Sheep in Inner Mongolia

ZHAO WeiHong1(), HAN WenXiong2, YANG Bo3, MENG WeiKang1, CHAI HaiLiang1, MA YiMin1, ZHANG ZhanSheng1, WANG LiFeng1, WANG Yan1, WANG MingYuan1, ZHANG Shan1, DING YuLin1, WANG JinLing1, JIRINTAI Sulijid1, WANG FengLong1, ZHAO Li1(), LIU YongHong1()   

  1. 1 College of Veterinary Medicine, Inner Mongolia Agricultural University/Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot 010000
    2 Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd., Hohhot, 011517
    3 Animal Disease Control Center of Ordos, Ordos 017000, Inner Mongolia
  • Received:2021-11-11 Accepted:2022-08-30 Online:2023-03-16 Published:2023-03-23

Abstract:

【Objective】 Paratuberculosis is listed in the must-report at the list of “World Organization for Animal Health (OIE) diseases, infections and Invasion” by OIE. It is classified as the second kind of animal disease in China. It causes chronic and proliferative enteritis in many ruminants. The infected animals become a continuous source of infection in farms through intestinal intermittent excretion, which has brought great economic losses to aquaculture. The pathogen of Mycobacterium avium subsp. paratuberculosis (MAP) belongs to intracellular parasitic Gram-positive bacteria, and is a third group of zoological pathogenic microorganisms, including type C (also designated as type II) and type S. Type C also includes type B. Type S can be further subdivided into sub-group types I and III. And sub-lineages of camelid isolates Studies have shown that each subtype of MAP has no host specificity, but is regional. Inner Mongolia is the first region of the disease in China. It is of great significance to obtain and accurately identify the subtype and genetic characteristics of MAP strains in Inner Mongolia for the prevention and control of paratuberculosis. 【Method】 28 MAP-positive sheep disease samples collected in Inner Mongolia were isolated and cultured by MAP, and the colonies were stained with Ziehl-Neelsen. The positive bacteria were propagated and the genomic DNA was extracted. IS900 gene, IS1311 gene and DMC gene were amplified, sequenced, and analyzed. The PCR products of IS1311 gene were identified by Hinf I and Mse I double digestion. 【Result】 28 samples were cultured for 7- 2 weeks, a total of 9 mediums grew colonies, and the colonies were translucent milky white smooth surface. Single colonies were selected for acid-fast staining, and irregular (single or branched), red-stained Brevibacterium was observed under the microscope, which was consistent with the morphological characteristics and acid-fast staining characteristics of Mycobacterium. The PCR products of IS900, IS1311 and DMC genes of 9 isolates were consistent with the expected size of the target gene fragment. 9 isolates were identified as MAP strains, named MAP-NM1 to MAP-NM9. DMC gene amplification product size of 310bp, which was consistent with type II MAP characteristics. IS1311 gene amplification products were digested by Hinf I and Mse I restriction endonucleases, and 4 target bands were obtained in 9 strains of MAP, which were consistent with type II MAP. The sequencing results of IS1311 gene and the analysis of MAP representative strains of type I, type II, type III, Indian Buffalo and American Buffalo showed that the nucleotide sites at positions 64, 65, 68, 223, 236, 422, 527 and 628 of the nine MAP IS1311 gene fragments were conformed to the characteristics of type C and type B MAP. Sequence analysis of IS900 gene sequencing results showed that the 169th and 216th nucleotides of the nine MAP IS900 gene fragments were C (cytosine) and A (adenine), and accorded with Type II and type III MAP. The phylogenetic tree of 17 MAP IS900 gene reference sequences from GenBank database with 9 isolates in this study showed that the 9 isolates in this study were all in the type II MAP branch. Blast online analysis was performed on the sequencing results of the three genes. The reference sequences with the highest homology with the isolates obtained in this study were all type II MAP, and the homology was higher than 98%. In conclusion, all the 9 MAP isolates were type II MAP. 【Conclusion】 To the best of our knowledge, this was the first isolate of the MAP type Ⅱ strains in sheep in Inner Mongolia.

Key words: Mycobacterium avium subsp. paratuberculosis, isolated, typing, sheep, Inner Mongolia

Table 1

Collection of disease material information"

编号 No. 采集地点 Place of collection 采集时间 Time of collection 物种 Species
1 呼和浩特Hohhot 2018.5 绵羊Sheep
2-4 呼和浩特Hohhot 2016.12 山羊Gost
5-7 锡林郭勒Xilingol 2015.4 绵羊Sheep
8-10 锡林郭勒Xilingol 2015.5 山羊Gost
11-12 阿拉善Alxa 2021.4 山羊Gost
A1-A16 阿拉善Alxa 2020.6 山羊Gost

Table 2

Specific primer"

引物 Primer 引物序列 Primer Sequence (5'→3') 大小Size (bp) 参考文献 References
IS900-F GTTCGGGGCCGTCGCTTAGG 400 [17]
IS900-R GAGGTCGATCGCCCACGTGA
IS1311-F GCGTGAGGCTCTGTGGTGAA 608 [18]
IS1311-R ATGACGACCGCTTGGGAGAC
DMC529 TTGACAACGTCATTGAGAATCC 146(Ⅰ型Type Ⅰ)
310(Ⅱ型Type Ⅱ)
[19]
DMC531 TCTTATCGGACTTCTTCTGGC
DMC533 CGGATTGACCTGCGTTTCAC

Table 3

Reference strains"

序号
No.
基因
Name of gene
菌株名称
Name of strain
GenBank登录号
GenBank accession number
亚型
Subtypes
1 IS900 ATCC 53950 AF305073 Ⅱ型Type Ⅱ
2 A1 MN928512 Ⅱ型Type Ⅱ
3 FA0010 MT017597 Ⅱ型Type Ⅱ
4 JTC 1285 NZ_AGAL01000886 Ⅱ型Type Ⅱ
5 316F AF416985 Ⅱ型Type Ⅱ
6 21P FJ775181 Ⅰ型Type Ⅰ
7 不详Unknown AJ250015 Ⅱ型Type Ⅱ
8 不详Unknown AJ250022 Ⅱ型Type Ⅱ
9 Ben X16293 Ⅱ型Type Ⅱ
10 Case-2 MW546836 Ⅱ型Type Ⅱ
11 Case-7 MW546841 Ⅲ型Type Ⅲ
12 JII-1961 CP022105 Ⅱ型Type Ⅱ
13 JIII-386 CP042454 Ⅲ型Type Ⅲ
14 MAPK_CN4-13 CP033910 Ⅱ型Type Ⅱ
15 MAPK_CN9-15 CP033427 Ⅱ型Type Ⅱ
16 S397 CP053749 Ⅲ型Type Ⅲ
17 Telford CP033688 Ⅰ型Type Ⅰ
18 IS1311 JD97/1-2 AJ223975 S型Type S
19 316V AJ223974 C型Type C
20 98/1010 AJ308375 美国野牛型USA Bison type
21 'Bison type' S5 EF514838 印度野牛型Indian Bison type

Fig. 1

Colony morphology (Left) and Acid-fast staining of the isolates (Right)"

Fig. 2

PCR amplification results of DMC gene (Left) and double digestion results of IS1311 gene (Right) M: Marker; 1: Negative control; 2-10: MAP-NM1 isolate to MAP-NM9 isolate"

Table 4

Reference strains"

菌株名
Name of strain
亚型
Subtypes
IS1311位点 Position on IS1311
64 65 68 223 236 422 527 628
JD97/1-2 S型Type S T G C C C C A C
316V C型Type C T G C Y C C A C
98/1010 B型美国野牛型 (Type B) USA Bison type T G C T C C A C
'Bison type' S5 B型印度野牛型 (Type B) Indian Bison type - - C T C N N N
MAP-NM1至MAP-NM9
MAP-NM1 to MAP-NM9
本研究分离株
The isolates in this study
T G C T C C A C

Fig. 3

Evolutionary relationships of IS900 gene (Evolutionary analyses were conducted in MEGA5 by Neighbor-Joining method) The black rhombus tagging sequence is the sequence of this research"

Table 5

Blast analysis results of 27 genomic segments from MAP"

序号
No.
菌株名
Name of strain
基因名称
Name of gene
同源性最高序列名称
Name of the most homologous sequence
GenBank登录号
GenBank accession
number
同源性
Nucleotide homology (%)
亚型
Subtypes
1 MAP-NM1 IS900 Case-3 MW546837.1 99.45 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.47 Ⅱ型Type Ⅱ
DMC Case-3 MW546851.1 98.93 Ⅱ型Type Ⅱ
2 MAP-NM2 IS900 DSM 44135 CP053068.1 99.46 Ⅱ型Type Ⅱ
IS1311 Case-2 MW546850.1 99.31 Ⅱ型Type Ⅱ
DMC Case-3 MW546844.1 98.94 Ⅱ型Type Ⅱ
3 MAP-NM3 IS900 DSM 44135 CP053068.1 99.45 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.65 Ⅱ型Type Ⅱ
DMC Case-4 MW546845.1 99.29 Ⅱ型Type Ⅱ
4 MAP-NM4 IS900 DSM 44135 CP053068.1 99.72 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.64 Ⅱ型Type Ⅱ
DMC Case-3 MW546851.1 98.58 Ⅱ型Type Ⅱ
5 MAP-NM5 IS900 DSM 44135 CP053068.1 99.73 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.66 Ⅱ型Type Ⅱ
DMC Case-3 MW546844.1 99.28 Ⅱ型Type Ⅱ
6 MAP-NM6 IS900 DSM 44135 CP053068.1 100.00 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.64 Ⅱ型Type Ⅱ
DMC Case-3 MW546851.1 99.29 Ⅱ型Type Ⅱ
7 MAP-NM7 IS900 DSM 44135 CP053068.1 99.45 Ⅱ型Type Ⅱ
IS1311 Case-4 MW546852.1 99.48 Ⅱ型Type Ⅱ
DMC Case-3 MW546844.1 99.29 Ⅱ型Type Ⅱ
8 MAP-NM8 IS900 DSM 44135 CP053068.1 98.91 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.82 Ⅱ型Type Ⅱ
DMC Case-3 MW546851.1 99.29 Ⅱ型Type Ⅱ
9 MAP-NM9 IS900 DSM 44135 CP053068.1 99.18 Ⅱ型Type Ⅱ
IS1311 Case-5 MW546853.1 99.65 Ⅱ型Type Ⅱ
DMC Case-3 MW546851.1 98.93 Ⅱ型Type Ⅱ

Table 6

Results of subtype analysis"

分离株
Isolate
PCR结果
Result of PCR
IS900序列分析
Sequence analysis of IS900
IS1311序列分析
Sequence analysis of IS1311
BLAST分析
BLAST analysis
进化树
Evolutionary tree
结论
Conclusion
MAP-NM1 + Ⅱ/Ⅲ B/C
MAP-NM2 + Ⅱ/Ⅲ B/C
MAP-NM3 + Ⅱ/Ⅲ B/C
MAP-NM4 + Ⅱ/Ⅲ B/C
MAP-NM5 + Ⅱ/Ⅲ B/C
MAP-NM6 + Ⅱ/Ⅲ B/C
MAP-NM7 + Ⅱ/Ⅲ B/C
MAP-NM8 + Ⅱ/Ⅲ B/C
MAP-NM9 + Ⅱ/Ⅲ B/C
[1]
STABEL J R, BANNANTINE J P, HOSTETTER J M. Comparison of sheep, goats, and calves as infection models for Mycobacterium avium subsp. paratuberculosis. Veterinary Immunology and Immunopathology, 2020, 225: 110060. doi:10.1016/j.vetimm.2020.110060.

doi: 10.1016/j.vetimm.2020.110060
[2]
WINDSOR P A. Managing control programs for ovine caseous lymphadenitis and paratuberculosis in Australia, and the need for persistent vaccination. Veterinary Medicine (Auckland, N Z), 2014, 5: 11-22. doi:10.2147/VMRR.S44814.

doi: 10.2147/VMRR.S44814
[3]
STEVENSON K, HUGHES V M, DE JUAN L, INGLIS N F, WRIGHT F, SHARP J M. Molecular characterization of pigmented and nonpigmented isolates of Mycobacterium avium subsp. paratuberculosis. Journal of Clinical Microbiology, 2002, 40(5): 1798-1804. doi:10.1128/jcm.40.5.1798-1804.2002.

doi: 10.1128/jcm.40.5.1798-1804.2002
[4]
PURDIE A C, PLAIN K M, BEGG D J, DE SILVA K, WHITTINGTON R J. Gene expression profiles during subclinical Mycobacterium avium sub species paratuberculosis infection in sheep can predict disease outcome. Scientific Reports, 2019, 9: 8245. doi:10.1038/s41598-019-44670-w.

doi: 10.1038/s41598-019-44670-w
[5]
RASMUSSEN P, BARKEMA H W, MASON S, BEAULIEU E, HALL D C. Economic losses due to Johne's disease (paratuberculosis) in dairy cattle. Journal of Dairy Science, 2021, 104(3): 3123-3143. doi:10.3168/jds.2020-19381.

doi: 10.3168/jds.2020-19381 pmid: 33455766
[6]
CASTELLANOS E, ARANAZ A, ROMERO B, DE JUAN L, ALVAREZ J, BEZOS J, RODRÍGUEZ S, STEVENSON K, MATEOS A, DOMÍNGUEZ L. Polymorphisms in gyrA and gyrB genes among Mycobacterium avium subsp. paratuberculosis type I, II, and III isolates. Journal of Clinical Microbiology, 2007, 45(10): 3439-3442. doi:10.1128/jcm.01411-07.

doi: 10.1128/jcm.01411-07
[7]
BRYANT J M, THIBAULT V C, SMITH D G E, MCLUCKIE J, HERON I, SEVILLA I A, BIET F, HARRIS S R, MASKELL D J, BENTLEY S D, PARKHILL J, STEVENSON K. Phylogenomic exploration of the relationships between strains of Mycobacterium avium sub species paratuberculosis. BMC Genomics, 2016, 17: 79. doi:10.1186/s12864-015-2234-5.

doi: 10.1186/s12864-015-2234-5
[8]
WIBBERG D, PRICE-CARTER M, RÜCKERT C, BLOM J, MÖBIUS P. Complete Genome Sequence of Ovine Mycobacterium avium subsp. paratuberculosis Strain JIII-386 (MAP-S/type III) and Its Comparison to MAP-S/type I, MAP-C, and M. avium Complex Genomes. Microorganisms, 2020, 9(1): 70. doi:10.3390/microorganisms9010070.

doi: 10.3390/microorganisms9010070
[9]
HODGEMAN R, MANN R, SAVIN K, DJITRO N, ROCHFORT S, RODONI B. Molecular characterisation of Mycobacterium avium subsp. paratuberculosis in Australia. BMC Microbiology, 2021, 21(1): 101. doi:10.1186/s12866-021-02140-2.

doi: 10.1186/s12866-021-02140-2
[10]
BHAT A M, MALIK H U, CHAUBEY K K, HUSSAIN T, MIR A Q, NABI S U, GUPTA S, SINGH S V. Bio-typing of Mycobacterium avium sub species paratuberculosis isolates recovered from the Himalayan sheep and goats. Tropical Animal Health and Production, 2021, 53(2): 237. doi:10.1007/s11250-021-02682-7.

doi: 10.1007/s11250-021-02682-7
[11]
牟巍, 蒋菲, 何宇, 丁家波, 彭小兵, 蒋玉文. 副结核分枝杆菌map0862基因的克隆及其在大肠杆菌中的表达. 中国兽药杂志, 2010, 44(8): 10-12, 21.
MU W, JIANG F, HE Y, DING J B, PENG X B, JIANG Y W. Cloning and expression of Mycobacterium avium subsp. paratuberculosis gene map0862 in E.coli. Chinese Journal of Veterinary Drug, 2010, 44(8): 10-12, 21. (in Chinese)
[12]
刘虹秀, 程玉笛, 党光辉, 李田田, 李鹤, 崔子寅, 宋宁宁, 陈利苹, 刘思国. 牛副结核分枝杆菌的分离及鉴定. 中国预防兽医学报, 2018, 40(12): 1177-1180.
LIU H X, CHENG Y D, DANG G H, LI T T, LI H, CUI Z Y, SONG N N, CHEN L P, LIU S G. Isolation and identification of Mycobacterium avium subsp.paratuberculosis from cattle. Chinese Journal of Preventive Veterinary Medicine, 2018, 40(12): 1177-1180. (in Chinese)
[13]
高建鹏, 赵鑫, 高静雯, 李慧, 张莉, 齐亚银. 马鹿源副结核分枝杆菌的分离鉴定. 动物医学进展, 2019, 40(9): 128-132. doi:10.16437/j.cnki.1007-5038.2019.09.025.

doi: 10.16437/j.cnki.1007-5038.2019.09.025
GAO J P, ZHAO X, GAO J W, LI H, ZHANG L, QI Y Y. Isolation and identification of Mycobacterium avium subsp. paratuberculosis from red deer(Cervus elaphus). Progress in Veterinary Medicine, 2019, 40(9): 128-132. doi:10.16437/j.cnki.1007-5038.2019.09.025. (in Chinese)

doi: 10.16437/j.cnki.1007-5038.2019.09.025
[14]
洪都孜·波拉提, 魏玉荣, 孟肖潇, 杨学云, 古努尔·吐尔逊, 李建军, 吴建勇. 绵羊副结核分枝杆菌的分离与分子分型. 中国预防兽医学报, 2021, 43(2): 134-138.
HONGDUZI BOLATI, WEI Y R, MENG X X, YANG X Y, GUNUER TUERXUN, LI J J, WU J Y. Isolation and molecular typing of sheep Mycobacterium avium sub species paratuberculosis. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(2): 134-138. (in Chinese)
[15]
宋先忱, 李冰, 朱延旭, 张兴会, 王世泉, 郭伶, 徐鹏, 郭维军, 刘孝刚. 辽宁绒山羊副结核分枝杆菌的分离鉴定及分子生物学检测. 中国兽医杂志, 2018, 54(6): 32-34.
SONG X C, LI B, ZHU Y X, ZHANG X H, WANG S Q, GUO L, XU P, GUO W J, LIU X G. Isolation, identification and molecular biological detection of Mycobacterium tuberculosis from Liaoning cashmere goats. Chinese Journal of Veterinary Medicine, 2018, 54(6): 32-34. (in Chinese)
[16]
AHLSTROM C, BARKEMA H W, STEVENSON K, ZADOKS R N, BIEK R, KAO R, TREWBY H, HAUPSTEIN D, KELTON D F, FECTEAU G, LABRECQUE O, KEEFE G P, MCKENNA S L B, DE BUCK J. Limitations of variable number of tandem repeat typing identified through whole genome sequencing of Mycobacterium avium subsp. paratuberculosis on a national and herd level. BMC Genomics, 2015, 16: 161. doi:10.1186/s12864-015-1387-6.

doi: 10.1186/s12864-015-1387-6
[17]
MARCHESI J R, SATO T, WEIGHTMAN A J, MARTIN T A, FRY J C, HIOM S J, DYMOCK D, WADE W G. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 1998, 64(2): 795-799. doi:10.1128/AEM.64.2.795-799.1998.

doi: 10.1128/AEM.64.2.795-799.1998 pmid: 9464425
[18]
MARSH I, WHITTINGTON R, COUSINS D. PCR-restriction endonuclease analysis for identification and strain typing of Mycobacterium aviumsubsp.paratuberculosisand Mycobacterium avium subsp. avium based on polymorphisms in IS1311. Molecular and Cellular Probes, 1999, 13(2): 115-126. doi:10.1006/mcpr.1999.0227.

doi: 10.1006/mcpr.1999.0227
[19]
COLLINS D M, DE ZOETE M, CAVAIGNAC S M. Mycobacterium avium subsp. paratuberculosis strains from cattle and sheep can be distinguished by a PCR test based on a novel DNA sequence difference. Journal of Clinical Microbiology, 2002, 40(12): 4760-4762. doi:10.1128/JCM.40.12.4760-4762.2002.

doi: 10.1128/JCM.40.12.4760-4762.2002
[20]
STABEL J R. An improved method for cultivation of Mycobacterium paratuberculosis from bovine fecal samples and comparison to three other methods. International Dental Journal, 1997, 9(4): 375-380. doi:10.1177/104063879700900406.

doi: 10.1177/104063879700900406
[21]
WINDSOR P A. Paratuberculosis in sheep and goats. Veterinary Microbiology, 2015, 181(1/2): 161-169. doi:10.1016/j.vetmic.2015.07.019.

doi: 10.1016/j.vetmic.2015.07.019
[22]
蔡珠明, 党光辉, 臧鑫鑫, 邵明珠, 唐阳阳, 崔子寅, 宋宁宁, 刘思国. 黑龙江某规模化牛场副结核分枝杆菌的分离与鉴定. 中国预防兽医学报, 2020, 42(11): 1177-1180.
CAI Z M, DANG G H, ZANG X X, SHAO M Z, TANG Y Y, CUI Z Y, SONG N N, LIU S G. Isolation and identification of Mycobacterium avium subsp.paratuberculosis from a large-scale cattle farm in Heilongjiang. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(11): 1177-1180. (in Chinese)
[23]
常塔娜, 田莉莉, 许芳, 樊晓旭, 孙淑芳, 范伟兴. 甘肃省奶牛副结核分枝杆菌的调查与分离鉴定. 中国兽医科学, 2020, 50(7): 874-879. doi:10.16656/j.issn.1673-4696.2020.0123.

doi: 10.16656/j.issn.1673-4696.2020.0123
CHANG T N, TIAN L L, XU F, FAN X X, SUN S F, FAN W X. Investigation and isolation of Mycobacterium avium subsp. paratuberculosis in a cattle farm in Gansu Province, China. Chinese Veterinary Science, 2020, 50(7): 874-879. doi:10.16656/j.issn.1673-4696.2020.0123. (in Chinese)

doi: 10.16656/j.issn.1673-4696.2020.0123
[24]
SZTEYN J, LIEDTKE K, WISZNIEWSKA-ŁASZCZYCH A, WYSOK B, WOJTACKA J. Isolation and molecular typing of Mycobacterium avium subsp. paratuberculosis from faeces of dairy cows. Polish Journal of Veterinary Sciences, 2020, 23(3): 415-422. doi:10.24425/pjvs.2020.134686.

doi: 10.24425/pjvs.2020.134686
[25]
PARK H T, PARK H T, PARK W B, KIM S, HUR T Y, JUNG Y H, YOO H S. Genetic diversity of bovine Mycobacterium avium subsp. paratuberculosis discriminated by IS1311 PCR-REA, MIRU-VNTR, and MLSSR genotyping. Journal of Veterinary Science, 2018, 19(5): 627-624. DOI: https://doi.org/10.4142/jvs.2018.19.5.627.

doi: https://doi.org/10.4142/jvs.2018.19.5.627
[26]
FAWZY A, ZSCHÖCK M, EWERS C, EISENBERG T. Genotyping methods and molecular epidemiology of Mycobacterium avium subsp. paratuberculosis (MAP). International Journal of Veterinary Science and Medicines, 2018, 6(2): 258-264. doi:10.1016/j.ijvsm.2018.08.001.

doi: 10.1016/j.ijvsm.2018.08.001
[27]
WHITTINGTON R, MARSH I, CHOY E, COUSINS D. Polymorphisms in IS1311, an insertion sequence common to Mycobacterium avium and M. avium subsp. paratuberculosis, can be used to distinguish between and within these species. Molecular and Cellular Probes, 1998, 12(6): 349-358. doi:10.1006/mcpr.1998.0194.

doi: 10.1006/mcpr.1998.0194
[28]
ZHAO L, WANG Y, WANG J L, ZHAO W H, CHENG H X, MA Y M, CHAI H L, ZHANG Z S, WANG L F, MIAO Z Q, DING Y L, SULIJID J, DANG G H, LIU S Y, WANG F L, LIU S G, LIU Y H. Serological investigation and genotyping of Mycobacterium avium subsp. paratuberculosis in sheep and goats in Inner Mongolia, China. PLoS ONE, 2021, 16(9): e0256628. doi:10.1371/journal.pone.0256628.

doi: 10.1371/journal.pone.0256628
[29]
COLLINS M T. Diagnosis of paratuberculosis. Veterinary Clinics of North America Food Animal Practice, 1996, 12(2): 357-371. DOI: 10.1016/s0749-0720(15)30411-4.

doi: 10.1016/s0749-0720(15)30411-4
[30]
LIAPI M, LEONTIDES L, KOSTOULAS P, BOTSARIS G, IACOVOU Y, REES C, GEORGIOU K, SMITH G C, NASEBY D C. Bayesian estimation of the true prevalence of Mycobacterium avium subsp. paratuberculosis infection in Cypriot dairy sheep and goat flocks. Small Ruminant Research, 2011, 95(2/3): 174-178. doi:10.1016/j.smallrumres.2010.09.010.

doi: 10.1016/j.smallrumres.2010.09.010
[31]
HOSSEINIPORGHAM S, CUBEDDU T, ROCCA S, SECHI L A. Identification of Mycobacterium avium subsp. paratuberculosis (MAP) in sheep milk, a zoonotic problem. Microorganisms, 2020, 8(9): E1264. doi:10.3390/microorganisms8091264.

doi: 10.3390/microorganisms8091264
[32]
DZIEDZINSKA R, SLANA I. Mycobacterium avium subsp. paratuberculosis-an overview of the publications from 2011 to 2016. Current Clinical Microbiology Reports, 2017, 4(1): 19-28. doi:10.1007/s40588-017-0054-x.

doi: 10.1007/s40588-017-0054-x
[33]
彭永. 副结核分枝杆菌分离及小鼠感染模型的建立[D]. 北京: 中国兽医药品监察所, 2018.
PENG Y. Isolation of Mycobacterium avium subsp. paratuberculosis and the establishment of mouse infection model[D]. Beijing: China Institute of Veterinary Drug Control, 2018. (in Chinese)
[34]
高建鹏. 塔河马鹿源副结核分枝杆菌的分离鉴定及部分生物学特性研究[D]. 石河子: 石河子大学, 2019.
GAO J P. Isolation, identification and some biological characteristics study of Mycobacterium avium Subsp.Paratuberculosis from Tarim red deer (Cervus elaphus yarkandensis) source[D]. Shihezi: Shihezi University, 2019. (in Chinese)
[35]
RADOSEVICH T J, REINHARDT T A, LIPPOLIS J D, BANNANTINE J P, STABEL J R. Proteome and differential expression analysis of membrane and cytosolic proteins from Mycobacterium avium subsp. paratuberculosis strains K-10 and 187. Journal of Bacteriology, 2007, 189(3): 1109-1117. doi:10.1128/JB.01420-06.

doi: 10.1128/JB.01420-06
[36]
马呼和, 东风, 杨万科. 羊传染性腹泻病的调查及防治试验. 畜禽业, 2015(2): 72-74. doi:10.19567/j.cnki.1008-0414.2015.02.048.

doi: 10.19567/j.cnki.1008-0414.2015.02.048
MA H H, DONG F, YANG W K. Investigation and control of infectious diarrhea in sheep. Livestock and Poultry Industry, 2015(2): 72-74. doi:10.19567/j.cnki.1008-0414.2015.02.048. (in Chinese)

doi: 10.19567/j.cnki.1008-0414.2015.02.048
[37]
ALCEDO K P, THANIGACHALAM S, NASER S A. RHB-104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn's disease associated with Mycobacterium paratuberculosis. Gut Pathogens, 2016, 8: 32. doi:10.1186/s13099-016-0115-3.

doi: 10.1186/s13099-016-0115-3
[38]
SHIN S J, COLLINS M T. Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrobial Agents and Chemotherapy, 2008, 52(2): 418-426. doi:10.1128/AAC.00678-07.

doi: 10.1128/AAC.00678-07
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] LI Long, LI ChaoNan, MAO XinGuo, WANG JingYi, JING RuiLian. Advances and Perspectives of Approaches to Phenotyping Crop Root System [J]. Scientia Agricultura Sinica, 2022, 55(3): 425-437.
[3] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[4] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[5] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[6] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[7] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[8] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[9] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[10] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[11] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[12] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[13] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[14] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[15] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!