Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1091-1105.doi: 10.3864/j.issn.0578-1752.2018.06.009

;

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatio-Temporal Changes in Global Cultivated Land over 2000-2010

HU Qiong, WU WenBin, XIANG MingTao, CHEN Di, LONG YuQiao, SONG Qian, LIU YiZhu, LU Miao, YU QiangYi   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Beijing 100081
  • Received:2017-04-23 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】This study is to analyze the spatial distribution and spatio-temporal change patterns of global cultivated land so as to provide important insights for national food security decision-making and global ecological environment monitoring. 【Method】To do so, this study analyzed the spatial distribution of global cultivated land in 2010, spatio-temporal change patterns of global cultivated land area and land use intensification during 2000-2010 by using eight statistical indicators, i.e., cultivated land area, changed area, standard deviation of changed area, percentage change of area, cultivated land area per capita, multiple cropping index, change and percentage change of multiple cropping index at three statistical scales, i.e., continent, country and 1°×1° grid. 【Result】The analysis results show the global total cultivated land area is 193 890.00×104 hm2 , which accounts for 14.31% of global total land area. The global average cultivated area per capital is 0.28 hm2 in 2010, among which Oceania ranks first (1.71 hm2) and Asia comes last (0.17 hm2). Regions in [10oN-45oN, 65oE-125oE], [40oN-55oN, 15oE-55oE] and [15oS-45oS, 45oW-70oW] have the largest cultivated land area over the world. The top ten countries with largest cultivated land area are: China, the United States, India, Russia, Brazil, Argentina, Australia, Canada, Kazakhstan and Ukraine, among which Russia, Canada, Argentina and Australia are also among the top ten countries in cultivated area per capita. During 2000-2010, global cultivated land has a slight increase of 2.19%, among which America has the largest increase in cultivated land area, with a increase of 2 128.14×104 hm2, and Africa has the biggest increase rate and spatial variation of cultivated land area, with increase percentage of 7.42%. Among the global top ten countries with the largest cultivated land area, China is the only country where cultivated land area declined during 2000-2010, with the decrease percentage of 0.95%, and Brazil and Argentina changed most both in total cultivated land area and spatial area distribution, and the United States has the least change both in total area and percentage change of area. Regions with the highest agricultural cropping intensity concentrated in South-east Asia, Central America and West Africa, all of which have multiple cropping index of more than 200%. Five countries of the top ten with the largest cultivated land area show increase in multiple cropping index from 2000 to 2010, among which Brazil and Kazakhstan increased most and Russia decreased most. 【Conclusion】Global cultivated land generally keeps stable during this period, but there is obvious difference across regions and nations. Our study analyzed the current status of global cultivated land distribution and its change during 2000-2010 based on the 30 meter global land cover data. The results in this study provide important information and data for studies of global water resources use, global production change and food security in the future.

Key words: global, cultivated land, spatio-temporal change, GlobeLand30

[1]    赵文武. 世界主要国家耕地动态变化及其影响因素. 生态学报, 2012, 32(20): 6452-6462.
ZHAO W W. Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecologica Sinica, 2012, 32(20): 6452-6462. (in Chinese)
[2]    陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49(6): 1117-1131.
CHEN Y J , YI X Y, FANG L N, YANG R Z. Analysis of cultivated land and grain production potential in China. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. (in Chinese)
[3]    胡琼, 吴文斌, 宋茜, 余强毅, 杨鹏, 唐华俊. 农作物种植结构遥感提取研究进展. 中国农业科学, 2015, 48(10): 1900-1914.
HU Q, WU W B, SONG Q, YU Q Y, YANG P, TANG H J. Recent progresses in research of crop patterns mapping by using remote sensing. Scientia Agricultura Sinica, 2015, 48(10): 1900-1914. (in Chinese)
[4]    唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 农作物空间格局遥感监测研究进展. 中国农业科学, 2010, 43(14): 2879-2888.
TANG H J, WU W B, YANG P, ZHOU Q B, CHEN Z X. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. (in Chinese)
[5]    RAMANKUTTY N, EVAN A T, MONFREDA C, FOLEY J A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 2008, 22, GB1003. doi: 10. 1029/2007GB002952.
[6]    LIU J, LIU M, TIAN H, ZHUANG D, ZHANG Z, ZHANG W, TANG X, DENG X. Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 2005, 98(4): 442-456.
[7]    SEE L, SCHEPASCHENKO D, LESIV M, MCCALLUM I, FRITZ S, COMBER A, PERGER C, SCHILL C, ZHAO Y, MAUS V, SIRAJ M A, ALBRECHT F, CIPRIANI A, VAKOLYUK M Y, GARCIA A, RABIA A H, SINGHA K, MARCARINI A A, KATTENBORN T, HAZARIKA R, SCHEPASCHENKO M, van der VELDE M, KRAXNER F, OBERSTEINER M. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 48-56.
[8]    WU W, SHIBASAKI R, YANG P, ZHOU Q, TANG H. Remotely sensed estimation of cropland in China: a comparison of the maps derived from four global land cover datasets. Canadian Journal of Remote Sensing, 2008, 34(5): 467-479.
[9]    LU M, WU W B, ZHANG L, LIAO A P, PENG S, TANG H J. A comparative analysis of five global cropland datasets in China. Science China Earth Sciences, 2016, 59(12): 2307-2317.
[10]   曹鑫, 陈学泓, 张委伟, 廖安平, 陈利军, 陈志刚, 陈晋. 全球30m间分辨率耕地遥感制图研究. 中国科学: 地球科学, 2016, 46(11): 1426-1435.
CAO X, CHEN X H, ZHANG W W, LIAO A P, CHEN L J, CHEN Z G, CHEN J. Global cultivated land mapping at 30m spatial resolution. Scientia Sinica(Terrae), 2016, 46(11): 1426-1436. (in Chinese)
[11]   MONFREDA C, RAMANKUTTY N, FOLEY J A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 2008, 22(1): 1-19.
[12]   CHEN J, CHEN J, LIAO A, CAO X, CHEN L, CHEN X, HE C, HAN G, PENG S, LU M, ZHANG W, TONG X, MILLS J. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103(1): 7-27.
[13]   陈军, 陈利军, 李然, 廖安平, 彭舒, 鲁楠, 张宇硕. 基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析. 测绘学报, 2015, 44(11): 1181-1188.
CHEN J, CHEN L J, LI R, LIAO A P, PENG S, LU N, ZHANG Y S. Spatial distribution and ten years change of global built-up areas derived from GlobeLand30. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1181-1188. (in Chinese)
[14]   刘吉羽, 彭舒, 陈军, 廖安平, 张宇硕. 全球知识的GlobeLand30耕地数据质量检查方法与工程实践. 测绘通报, 2015(4): 42-48.
Liu J Y, Peng S, Chen J, Liao A P, Zhang Y S. Knowledge based quality checking method and engineering practice of globeLand30 cropland data. Bulletin of Surveying and Mapping, 2015(4): 42-48. (in Chinese)
[15]   陈军, 陈晋, 廖安平, 曹鑫, 陈利军, 陈学泓, 彭舒, 韩刚, 张宏伟, 何超英, 武昊, 陆苗. 全球30m地表覆盖遥感制图的总体技术. 测绘学报, 2014, 43(6): 551-557.
CHEN J, CHEN J, LIAO A P, CAO X, CHEN L J, CHEN X H, PENG S, HAN G, ZHANG H W, HE C Y, WU H, LU M. Concepts and key techniques for 30m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551-557. (in Chinese)
[16]   CAO X, CHEN J, CHEN L J, LIAO A P, SUN F D, LI Y, LI L, LIN Z H, PANG Z G, CHEN J, HE C Y, PENG S. Preliminary analysis of spatiotemporal pattern of global land surface water. Science China Earth Sciences, 2014, 57(10): 2330-2339.
[17]   YAO Z Y, ZHANG L J, TANG S H, LI X X, HAO T T. The basic characteristics and spatial patterns of global cultivated land change since the 1980s. Journal of Geographical Sciences, 2017, 27(7): 771-785.
[18]   XIAO X G, BOLES S, FROLKING S, LI C S, BABU J Y, SALAS W, MOORE III B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 2006, 100(1): 95-113.
[19]   RAMANKUTTY N, FOLEY J A. Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles, 1998, 12(4): 667-685.
[20]   De SOUZA J P A. Biased technical change in agriculture and industrial growth. Metroeconomica, 2017, 68(3): 549-583.
[21]   刘纪远, 张增祥, 徐新良, 匡文慧, 周万村, 张树文, 李仁东, 颜长珍, 于东升, 吴世新, 江南. 21世纪初中国土地利用变化的空间格局与驱动力分析. 地理学报, 2009, 64(12): 1411-1420.
LIU J Y, ZHANG Z X, XU X L, KUANG W H, ZHOU W S, ZHANG S W, LI R D, YAN C Z, YU D S, WU S X, JIANG N. Spatial patterns and driving forces of land use change in China in the early 21st century. Acta Geographica Sinica, 2009, 64(12): 1411-1420. (in Chinese)
[22]   刘纪远, 匡文慧, 张增祥, 徐新良, 秦元伟, 宁佳, 周万村, 张树, 李仁东. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014, 69(1): 3-14.
LIU J Y, KUANG W H, ZHANG Z X, XU X L, QIN Y W, NING J, ZHOU W S, ZHANG S W, LI R D. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geographica Sinica, 2014, 69(1): 3-14. (in Chinese)
[23]   KNAUER K, GESSNER U, FENSHOLT R, FORKUOR G, KUENZER C. Monitoring agricultural expansion in burkina faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment. Remote Sensing, 2017, 9(2): 132.
[24]   WANG L, LI C C, YING Q, CHENG X, WANG X Y, LI X Y, HU L Y, LIANG L, YU L, HUANG H B, GONG P. China's urban expansion from 1990 to 2010 determined with satellite remote sensing. Chinese Science Bulletin, 2012, 57(22): 2802-2812.
[25]   GRAESSER J, AIDE T M, GRAU H R, RAMANKUTTY N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 2015, 10(3): 34017.
[26]   PEI H, SCANLON B R, SHEN Y, REEDY R C, Di Long, LIU C. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains. Environmental Research Letters, 2015, 10(4): 44013.
[27]   GALFORD G L, MUSTARD J F, MELILLO J, GENDRIN A, CERRI C C, CERRI C E P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 2008, 112(2): 576-587.
[28]   MARTÍNEZ-CASASNOVAS J A, MARTÍN-MONTERO A, AUXILIADORA CASTERAD M. Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images. European Journal of Agronomy, 2005, 23(2): 159-169.
[29]   WAHA K, M U LLER C, BONDEAU A, DIETRICH J P, KURUKULASURIYA P, HEINKE J, LOTZE-CAMPEN H. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 2013, 23(1): 130-143.
[30]   SAKAMOTO T, Van NGUYEN N, OHNO H, ISHITSUKA N, YOKOZAWA M. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 2006, 100(1): 1-16.
[31]   郭占锋, 李小云. 对当前非洲农业研究的若干思考. 农业经济, 2012(3): 17-19.
GUO Z F, LI X Y. Some thoughts on agricultural research in Africa. Agricultural Economics, 2012(3): 17-19. (in Chinese)
[32]   ALCANTARA C, KUEMMERLE T, BAUMANN M, BRAGINA E V, GRIFFITHS P, HOSTERT P, KNORN J, MÜLLER D, PRISHCHEPOV A V, SCHIERHORN F, SIEBER A, RADELOFF V C. Mapping the extent of abandoned farmland in central and eastern Europe using MODIS time series satellite data. Environmental Research Letters, 2013, 8(3): 1345-1346 .
[33]   ESTEL S, KUEMMERLE T, LEVERS C, BAUMANN M, HOSTERT P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environmental Research Letters, 2016, 11(2): 24015.
[34]   KUEMMERLE T, ERB K, MEYFROIDT P, MÜLLER D, VERBURG P H. Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5: 1-10.
[35]   宋博, 丁圣彦, 赵爽, 李子晗, 侯笑云. 农业景观异质性对生物多样性及其生态系统服务的影响. 中国生态农业学报, 2016, 24(4): 443-450.
SONG B, DING S Y, ZHAO S, LI Z H, HOU X Y. Effects of agricultural landscape heterogeneity on biodiversity and ecosystem services. Chinese Journal of Eco-Agriculture, 2016, 24(4): 443-450. (in Chinese)
[1] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[2] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[3] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[4] TaoTao YANG,JiaXin XIE,Shan HUANG,XueMing TAN,XiaoHua PAN,YongJun ZENG,QingHua SHI,Jun ZHANG,YanHua ZENG. The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347.
[5] ZHU XiaoQing,AN Jing,MA Ling,CHEN SongLing,LI JiaQi,ZOU HongTao,ZHANG YuLong. Effects of Different Straw Returning Depths on Soil Greenhouse Gas Emission and Maize Yield [J]. Scientia Agricultura Sinica, 2020, 53(5): 977-989.
[6] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[7] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[8] LI DongChu,HUANG Jing,MA ChangBao,XUE YanDong,GAO JuSheng,WANG BoRen,ZHANG YangZhu,LIU KaiLou,HAN TianFu,ZHANG HuiMin. Spatio-Temporal Variations of Soil Organic Matter in Paddy Soil and Its Driving Factors in China [J]. Scientia Agricultura Sinica, 2020, 53(12): 2410-2422.
[9] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[10] LIU Qiao,JI YanZhi,GUO YanJie,ZHANG LiJuan,ZHANG Jie,HAN Jian. Effects of Water and Nitrogen Regulation on Greenhouse Gas Emissions and Warming Potential in Vineyard Soil [J]. Scientia Agricultura Sinica, 2019, 52(8): 1413-1424.
[11] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
[12] LIU JieAn, WANG XiaoHui, WU Yao, JIA Hao, YIN XiaoGang, SHI LeiGang, CHU QingQuan, CHEN Fu. Spatiotemporal Variation and Regional Advantages of Foxtail Millet Production in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2019, 52(11): 1883-1894.
[13] CHEN Di, WU WenBin, ZHOU QingBo, HU Qiong, XIANG MingTao, LU Miao, YU QiangYi. Changes of Cultivated Land Utilization Pattern in Asia from 2000 to 2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1106-1120.
[14] XIANG MingTao, WU WenBin, HU Qiong, CHEN Di, LU Miao, YU QiangYi . Spatial-Temporal Changes in Cultivated Lands in Europe over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1121-1133.
[15] LONG YuQiao, WU WenBin, HU Qiong, CHEN Di, XIANG MingTao, LU Miao, YU QiangYi. Spatio-Temporal Changes in America’s Cropland over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1134-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!