Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (6): 1134-1143.doi: 10.3864/j.issn.0578-1752.2018.06.012

;

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatio-Temporal Changes in America’s Cropland over 2000-2010

LONG YuQiao, WU WenBin, HU Qiong, CHEN Di, XIANG MingTao, LU Miao, YU QiangYi   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Beijing 100081
  • Received:2017-04-23 Online:2018-03-16 Published:2018-03-16

Abstract: 【Objective】The analysis of the spatial and temporal pattern of cropland is one of the hot issues of land surface research. As the world's most important grain production area, a spatio-temporal pattern analysis of America provides regional insight for cropland sustainable development with potential global applications.【Method】GlobeLand30—Cropland, mathematical statistics and GIS-based spatial analysis methods were adopted to explore the spatial-temporal characteristics of cropland area and conversion in America from 2000 to 2010, with particular emphasis on the Amazon region.【Result】This analysis shows that the total cropland area increased by 4.19% from 2000 to 2010 with 2 128.14×104 hm2, mainly converted from forest and grassland. The main conversion from cropland was to artificial surfaces. The major cropland expansion happened in Brazil with a rate of 9.51%, followed by Argentina. Ecuador showed the greatest decrease with 101.14×104 hm2. From 2000 to 2010, the multiple cropping index increased across the entire region by 2.42%, with Paraguay and Puerto Rico exhibiting the most significant changes. The United States of America had the most cropland area, however growth rate was only 0.08% and the multiple cropping index decreased by 0.89%. Brazil had the second highest amount of cropland area and a high rate of increase (9.51%), with most of the new cropland converted from forest and grassland. As the most important agricultural district and ecoregion in America, the Amazon experienced a cropland increase of 8.41%, with the direct conversions mostly occurring in the southwest of Brazil and Ecuador.【Conclusion】The total amount of cropland in America increased during 2000-2010, but there were large differences between countries. The direct conversions to cropland were mainly from woodlands, grasslands and shrubland in Brazil and Argentina. Loss of cropland was primarily caused by conversion to artificial land. Additionally, the Amazon experienced a steady increase in both the area of cropland and the multiple cropping index. While these increases bolster the regional and global grain production, the ecological environmental effects require more consideration.

Key words: American, cropland, spatial pattern, multi-scale, spatiotemporal characteristics, GlobeLand30

[1]    杨桂山. 长江三角洲耕地数量变化趋势及总量动态平衡前景分析. 自然资源学报, 2002, 17(5): 525-532.
YANG G S. Cropland area change and the probability of maintaining dynamic balance of its amount in the Yangtze River Delta. Journal of Natural Resources, 2002, 17(5): 525-532. (in Chinese)
[2]    黄亚捷, 叶回春, 张世文, 郧文聚, 黄元仿. 基于自组织特征映射神经网络的中国耕地生产力分区. 中国农业科学, 2015, 48(6): 1136-1150.
HUANG Y J, YE H C, ZHANG S W, YUN W J, HUANG Y H. Zoning of arable land productivity based on self—organizing map in China. Scientia Agricultura Sinica, 2015, 48(6): 1136-1150. (in Chinese)
[3]    唐华俊, 吴文斌, 余强毅, 夏天, 杨鹏, 李正国. 农业土地系统研究及其关键科学问题. 中国农业科学, 2015, 48(5): 900-910.
TANG H J, WU W B, YU Q Y, XI T, YANG P, LI Z G. Key research priorities for agricultural land system studies. Scientia Agricultura Sinica, 2015, 48(5): 900-910. (in Chinese)
[4]    FAO. 2012. FAO statistical yearbook 2012, Food and Agriculture Organization of the United Nations.
[5]    LAMBIN E F, GIBBS H K, FERREIRA L, GRAU R, MAYAUX P, MEYFROIDT P, MORTON D, RUDEL T, GASPARRI I, MUNGER J. Estimating the worlds potentially available cropland using a bottom up approach. Glob Environ Change, 2013, 23: 892-901.
[6]    Nikos A. World Agriculture: Towards 2010: An FAO Study. Chichester, England: FAO and Wiley, 1995: 488.
[7]    FOLEY J A, RAMANKUTTY N, BRAUMAN K A, CASSIDY E S, GERBER J S, JOHNSTON M, MUELLER N D, OCONNELL C, RAY D K, WEST P C, BALZER C, BENNETT E M, CARPENTER S R, HILL J, MONFREDA C, POLASKY S, ROCKSTROM J, SHEEHAN J, SIEBERT S. Solutions for a cultivated planet. Nature, 2011, 478: 337-342.
[8]    LAUE J E, ARIMA E Y. Spatially explicit models of land abandonment in the Amazon. Journal of Land Use Science, 2016, 11(1): 48-75.
[9]    AIDE T M, MUÑIZ M. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica, 2013, 45(2): 262-271.
[10]   Douglas C M, RUTH S D, YOSIO E S, LIANA O A, EGIDIO A, FERNANDODEL B E, RAMON F, JEFF M. Cropland expansion changes deforestation dynamics in the Southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39): 14637-14641.
[11]   ZEIGLER M, TRUITT NAKATA G. The next global breadbasket: How Latin America can feed the world: A call to action for addressing challenges & developing solutions. Inter—American Development Bank, 2014.
[12]   INSTITUTE S T. The future of tropical forests. Annals of the New York Academy of Sciences, 2012, 1268(1): 1-27.
[13]   DEFRIES R S, HOUGHTON R A, HANSEN M C, FIELD C B, SKOLE D, TOWNSHEND J. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(22): 14256-14261.
[14]   KARSTENSEN J, PETERS G P, ANDREW R M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environmental Research Letters, 2013, 8(2): 279-288.
[15]   GRAESSER J, AIDE T M, GRAU H R, RAMANKUTTY N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 10(2015)034017.
[16]   ARVOR D, MEIRELLES M, DUBREUIL V, BEGUE A, SHIMABUKURO Y E. Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite—derived indices. Applied Geography, 2012, 32(2): 702-713.
[17]   杜国明, 匡文慧, 孟凡浩, 迟文峰, 陆灯盛. 巴西土地利用/覆盖变化时空格局及驱动因素. 地理科学进展, 2015, 34(1): 73-82.
DU G M, KUANG W H, MENG F H, CHI W F, LU D S. Spatiotemporal pattern and driving forces of land use/cover change in Brazil. Progress in Geography, 2015, 34(1): 73-82. (in Chinese)
[18]   赵文武. 世界主要国家耕地动态变化及其影响因素. 生态学报, 2012, 32(20):6452-6462.
ZHAO W W. Arable land change dynamics and their driving forces for the major countries of the world. Acta Ecologica Sinica, 2012, 32(20): 6452-6462. (in Chinese)
[19]   CHEN J, CHEN J, LIAO A P, CAO X, CHEN L J, CHEN X H, HE C Y, HAN G, PENG S, LU M, ZHANG W W, TONG X H, MILLS J. Global land cover mapping at 30m resolution: a POK— based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
[20]   曹鑫, 陈学泓, 张委伟, 廖安平, 陈利军, 陈志刚, 陈晋. 全球30m空间分辨率耕地遥感制图研究. 中国科学:地球科学, 2016, 46(11): 1426-1435.
CAO X, CHEN X H, ZHANG W W, LIAO A P, CHEN L J, CHEN Z G, CHEN J. Global cultivated land mapping at 30 m spatial resolution. Scientia Sinica (Terrae), 2016, 59(11): 1426-1435. (in Chinese)
[21]   陈军, 陈利军, 李然, 廖安平, 彭舒, 鲁楠, 张宇硕. 基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析. 测绘学报, 2015, 44(11): 1181-1188.
CHEN J, CHEN L J, LI R, LIAN A P, PENG S, LU N, ZHANG Y S. Spatial Distribution and ten years change of global built—up areas derived from GlobeLand30. Acta Geodaetica et Cartographica Sinica,2015, 44(11): 1181-1188. (in Chinese)
[22]   曹鑫, 陈军, 陈利军, 廖安平, 孙芳蒂, 李阳, 李磊, 林忠辉, 庞治国, 陈晋, 何超英, 彭舒. 全球陆表水体空间格局与波动初步分析. 中国科学:地球科学, 2014, 44(8):1661-1670.
CAO X, CHEN J, CHEN L J, LIAN A P, SUN F D, LI Y, LI L, LIN Z H, PANG Z G, CHEN J, HE C Y, PENG S. Preliminary analysis of spatiotemporal pattern of global land surface water. Science China: Earth Sciences, 2014, 44(8): 1661-1670. (in Chinese)
[23]   杨洋, 麻馨月, 何春阳. 基于GlobeLand 30的耕地资源损失过程研究——以环渤海地区为例. 中国土地科学, 2016, 30(7):72-79.
YANG Y, MA X Y, HE C Y. The Loss Process of Cultivated Land based on Globe Land 30: A Case Study of Bohai Rim. China Land Sciences, 2016, 30(7):72-79. (in Chinese)
[24]   刘吉羽, 彭舒, 陈军, 廖安平,张宇硕. 基于知识的GlobeLand30耕地数据质量检查方法与工程实践. 测绘通报, 2015(4):42-48.
LIU J Y, PENG S, CHEN J, LIAO A P, ZHANG Y S. Knowledge Based Quality Checking Method and Engineering Practice of GlobeLand30 Cropland Data. Bulletin of Surveying and Mapping, 2015, 2015(4):42-48. (in Chinese)
[25]   胡琼, 吴文斌, 项铭涛, 陈迪, 龙禹桥, 宋茜, 刘逸竹, 陆苗, 余强毅. 全球耕地利用格局时空变化分析. 中国农业科学, 2017, 50(22): 1091-1105.
HU Q, WU W B, XIANG M T, CHEN D, LONG Y Q, SONG Q, LIU Y Z, LU M, YU Q Y. Spatio-temporal Changes in Global Cultivated Land over 2000-2010. Scientia Agricultura Sinica, 2017, 50(22): 1091-1105. (in Chinese)
[26]   MORTON D C, NOOJIPADY P, MACEDO M M, GIBBS H, VICTORIA D C, BOLFE E L. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Global Environmental Change, 2016, 37: 92-101.
[27]   BOWMAN M S, SOARES-FILHO B S, MERRY F D,NEPSTAD D  C, RODRIGUES H, ALMEIDA O T. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy, 2012, 29(3): 558-568.
[28]   BARRETTO A G O P, BERNDES G, SPAROVEK G, WIRSENIUS S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 2013, 19(6): 1804-1815.
[29]   CLARK M L, AIDE T M, RINER G. Land change for all municipalities in Latin America and the Caribbean assessed from 250m MODIS imagery (2001–2010). Remote Sensing of Environment, 2012, 126(4): 84-103.
[30]   LIU J Y, KUANG W H, ZHANG Z X, XU X L, QIN Y W, NING J, ZHOU W C, ZHANG S W, LI R D, YAN C Z, WU S X, SHI X Z, JIANG N, YU D S, PAN X Z, CHI W F. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Journal of Geographical Sciences, 2014, 24(2): 195-210.
[31]   张仲威. 试谈中国农业、农村经济发展前景从美国经济危机中得到的启示. 农业展望, 2009, 5(5): 37-39.
ZHANG Z W. Discussion of China's agricultural and rural economic prospects—lessons from the US economic crisis. Agricultural Outlook, 2009, 5(5): 37-39. (in Chinese)
[32]   贾洪雷, 马成林, 李慧珍, 陈忠亮. 基于美国保护性耕作分析的东北黑土区耕地保护. 农业机械学报, 2010, 41(10): 28-34.
JIA H L, MA C L, LI H Z, CHEN Z L. Tillage soil protection of black soil zone in Northeast of China based on analysis of conservation tillage in the United States. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 28-34. (in Chinese)
[33]   GALFORD G L, M USTARD J F, MELILLO J, GENDRIN A, CERRI C C, CERRI C E P. Wavelet analysis of MODIS time series to detect expansion and intensification of row—crop agriculture in Brazil. Remote Sensing of Environment, 2008, 112(2): 576-587.
[34]   DROS J M. Managing the soy boom: two scenarios of soy production expansion in South America. Technical Report(AIDEnvironment, Amsterdam) , 2004.
[35]   STICKLER C M, NEPSTAD D C, AZEVEDO A A, MCGRATH D G. Defending public interests in private lands: compliance, costs and potential environmental consequences of the Brazilian Forest Code in Mato Grosso. Philosophical Transactions B, 2012, 368: 160.
[36]   PACHECO P. Soybean and oil palm expansion in South America: a review of main trends and implications. Cifor Working Paper, 2012.
[37]   LEGUIZAMÓN A. Modifying Argentina: GM soy and socio— environmental change. Geoforum, 2014, 53: 149-160.
[38]   TAPIAARMIJOS M F, HOMEIER J, ESPINOSA C I, LEUSCHNER C, DE L C M. Correction: Deforestation and forest fragmentation in South Ecuador since the 1970s — Losing a Hotspot of Biodiversity. Plos One, 2015, 10(9): e0133701.
[39]   QUEZADA C A V, FONSECA M B, ROMERO H. The circular agriculture applied in neighboring countries: the case of biogas on the border between Ecuador and Perú. New Biotechnology, 2016, 33: 66-67.
[40]   GALEANO L A. Paraguay and the expansion of Brazilian and Argentinian agribusiness frontiers. Canadian Journal of Development Studies, 2012, 33(4):458-470.
[41]   URIOSTE M, TIERRA F, PAZ L. Concentration and “foreignisation” of land in Bolivia. Canadian Journal of Development Studies, 2012, 33(4): 439-457.
[42]   LAURANCE W F, GOOSEM M, LAURANCE S G. Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution, 2009, 24(12): 659.
[1] WU WenBin, YU QiangYi, LU Miao, XIANG MingTao, XIE AnKun, YANG Peng, TANG HuaJun. Key Research Priorities for Multiple Cropping Systems [J]. Scientia Agricultura Sinica, 2018, 51(9): 1681-1694.
[2] HU Qiong, WU WenBin, XIANG MingTao, CHEN Di, LONG YuQiao, SONG Qian, LIU YiZhu, LU Miao, YU QiangYi. Spatio-Temporal Changes in Global Cultivated Land over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1091-1105.
[3] CHEN Di, WU WenBin, ZHOU QingBo, HU Qiong, XIANG MingTao, LU Miao, YU QiangYi. Changes of Cultivated Land Utilization Pattern in Asia from 2000 to 2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1106-1120.
[4] XIANG MingTao, WU WenBin, HU Qiong, CHEN Di, LU Miao, YU QiangYi . Spatial-Temporal Changes in Cultivated Lands in Europe over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1121-1133.
[5] ZHANG Li, WU WenBin, SONG Qian, ZONG ZhaoWei, HU Qiong, XIANG MingTao, LU Miao. Changes in Africa’s Cultivated Land Use and Its Eco-Environmental Factors Over 2000-2010 [J]. Scientia Agricultura Sinica, 2018, 51(6): 1144-1155.
[6] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[7] WANG ChuanJie, XIAO Jing, CAI AnDong, ZHANG WenJu, XU MingGang. Capacity and Characteristics of Soil Microbial Biomass Under Various Climate and Fertilization Conditions Across China Croplands [J]. Scientia Agricultura Sinica, 2017, 50(6): 1067-1075.
[8] Maieryemu Yasen, Maimaiti Shawuti, Tuerxun Aishan, Ruzemaimaiti Mijiti, Yikeliman Abudumiti, Mayila Reheman. Spatial-Temporal Characteristics of Cropland in the Ugan-Kuqa River Delta Oasis [J]. Scientia Agricultura Sinica, 2017, 50(18): 3506-3518.
[9] NAN Feng, ZHU Hong-fen, BI Ru-tian. Hyperspectral Prediction of Soil Organic Matter Content in the Reclamation Cropland of Coal Mining Areas in the Loess Plateau [J]. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135.
[10] CHEN Xue-yuan, TANG Hua-jun, WU Yong-chang, ZHOU Qing-bo, CUI Jian. Analysis on Process and Difference of Cropland Dynamics in Anji County of Zhejiang Province [J]. Scientia Agricultura Sinica, 2015, 48(21): 4302-4313.
[11] CAI An-dong, ZHANG Wen-ju, YANG Pin-pin, HAN Tian-fu, XU Ming-gang. Effect Degree of Fertilization Practices on Soil Organic Carbon and Fraction of Croplands in China—Based on Meta-Analysis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004.
[12] CAI An-dong, XU Xiang-ru, ZHANG Xu-bo, XU Ming-gang, ZHANG Wen-ju. Capacity and Characteristics of Mineral Associated Soil Organic Carbon Under Various Land Uses [J]. Scientia Agricultura Sinica, 2014, 47(21): 4291-4299.
[13] ZHANG Chao-12, LIU Guo-Bin-12, XUE Sha-12, XIAO Lie-1. Characteristic of Soil Available Trace Elements on Abandoned Cropland in the Loess Hilly Region [J]. Scientia Agricultura Sinica, 2013, 46(18): 3809-3817.
[14] ZHANG Li, WU Wen-Bin, YANG Peng, TANG Hua-Jun, ZHOU Qing-Bo, LI Zheng-Guo. Temporal and Spatial Changes in Crop Patterns of Binxian County in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2013, 46(15): 3227-3237.
[15] TAO Jian, ZHANG Ge-Li, WANG Jun-Bang, DONG Jin-Wei. Variation of Cropland Phenology in Mid-eastern Inner Mongolia [J]. Scientia Agricultura Sinica, 2011, 44(22): 4583-4592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!