Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1338-1347.doi: 10.3864/j.issn.0578-1752.2020.07.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System

TaoTao YANG1,JiaXin XIE1,Shan HUANG1,XueMing TAN1,XiaoHua PAN1,YongJun ZENG1,QingHua SHI1,Jun ZHANG2,YanHua ZENG1   

  1. 1. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/ Collaborative Innovation Center for the Modernization Production of Double Cropping Rice, Jiangxi Agricultural University/Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang 330045
    2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-08-26 Accepted:2019-10-18 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】 The aim of this study was to evaluate the response of the grain yield and quality of late japonica rice in a double rice cropping system to post-anthesis warming, so as to provide a theoretical basis for the safe production and high quality cultivation of double-cropped late japonica rice under the future warming conditions.【Method】 This experiment was conducted at Shanggao Experimental Station of Jiangxi Agricultural University in 2017 and 2018, which was located in the main producing area of a double rice cropping system. The field warming experiment consisted of post anthesis warming treatment (PAW: increases temperature day and night continuously from heading stage to maturity stage) and ambient temperature treatment (CK) with three replicates in a randomized complete block design. The tested rice cultivar was indica-japonica hybrid rice Yongyou1538. PAW treatment was treated with a free-air temperature increase (FATI) facility. Grain yield, yield components, milling quality, appearance quality, RVA, amylose content, protein content, and amino acid content were compared and analyzed between control and post-anthesis warming treatments. 【Result】 Grain yield and quality of Yongyou 1538 changed obviously under PAW, and the change trend was basically consistent in two years. The specific performances were as follows: compared with CK, post-anthesis warming with an average canopy temperature increase of 2.2℃ decreased the grain yield by an average of 4.4% in two years. PAW had no significant effects on the milling quality, but increased chalky grain rate and chalkiness by an average of 27.4% and 24.4% in two years, respectively. Peak viscosity, trough viscosity, and pasting temperature showed increase trends under post-anthesis warming condition, but decreased setback, and had no effects on breakdown and final viscosity. The amylose content was decreased by an average of 6.4%, but the protein relative and absolute contents in milled rice were increased by an average of 8.7% and 6.6%, respectively. In addition, the content of non-essential amino acids and essential amino acids in milled rice were both increased under PAW, and the response of non-essential amino acids to PAW was more sensitive than that of essential amino acids, among which the total amount of non-essential amino acids was significantly increased by 5.7%. From the relative ratio of amino acids, it could be found that PAW had no significant effect on the relative ratio of most amino acids, but Tyr and Met. 【Conclusion】 Post-anthesis warming decreased grain yield of late japonica rice, deteriorated its appearance and cooking quality, but benefited its nutritional and eating quality.

Key words: global warming, post-anthesis warming, double-cropped late japonica rice, grain yield, grain quality

Fig. 1

Daily mean temperature, sunshine duration, and precipitation from rice heading to maturity in 2017 and 2018"

Table 1

Effects of post-anthesis warming on rice canopy temperature (℃)"

年份Year 处理Treatment 全天Diurnal 夜间Night time 白天Daytime
2017 CK 20.0±0.1 17.9±0.2 25.1±0.2
PAW 21.8±0.2 19.9±0.2 26.5±0.1
Δ 1.8 2.0 1.4
2018 CK 22.0±0.2 18.1±0.0 26.0±0.4
PAW 24.4±0.2 21.2±0.2 27.7±0.1
Δ 2.4 3.1 1.7

Table 2

Effects of post-anthesis warming on grain yield and yield components"

年份
Year
处理
Treatment
产量
Grain yield
(t·hm-2)
有效穗数
Panicle number (104·hm-2)
每穗粒数
Spikelet number per panicle
结实率
Filled grain percentage (%)
千粒重
1000-grain weight
(g)
2017 CK 11.19±0.39a 238.1±8.5a 263.7±11.9a 82.6±3.5b 26.9±0.2a
PAW 10.54±0.34b 233.5±13.2a 250.2±11.1a 84.6±4.1b 26.2±0.3b
2018 CK 10.80±0.17ab 235.4±8.1a 237.6±15.7a 94.0±0.9a 26.5±0.2b
PAW 10.48±0.13b 232.8±14.9a 235.6±10.7a 92.0±2.1a 26.2±0.2b
方差分析ANOVA 年份 (Y) ns ns ns ** ns
处理 (T) * ns ns ns **
年份×处理 Y×T ns ns ns ns *

Table 3

Effects of post-anthesis warming on milling and appearance quality"

年份
Year
处理
Treatment
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
垩白粒率
Chalky grain rate (%)
垩白度
Chalkiness (%)
2017 CK 83.2±0.5a 73.8±0.3a 65.4±2.5ab 29.7±2.3c 8.7±1.1c
PAW 82.1±1.1a 72.6±1.1a 66.7±0.1a 39.0±2.6b 11.4±0.1b
2018 CK 82.1±0.5a 70.5±0.6b 58.1±1.5c 42.0±1.7b 11.3±0.5b
PAW 82.1±0.6a 70.4±0.7b 61.6±2.3bc 51.0±3.0a 13.3±1.1a
方差分析ANOVA 年份 (Y) ns ** ** ** **
处理 (T) ns ns ns ** **
年份×处理 Y×T ns ns ns ns ns

Table 4

Effects of post-anthesis warming on amylose content and rice flour RVA"

年份
Year
处理
Treatment
直链淀粉含量
Amylose content
(%)
峰值黏度
Peak viscosity
(cP)
热浆黏度
Trough viscosity
(cP)
崩解值
Breakdown
(cP)
最终黏度
Final viscosity
(cP)
消减值
Setback
(cP)
糊化温度
Pasting temperature (℃)
2017 CK 14.6±0.4a 3587±10b 2132±52b 1455±47a 3217±75ab -370±81b 78.6±1.2a
PAW 13.3±0.4b 3756±64a 2272±61a 1484±31a 3286±14a -470±63b 79.6±1.2a
2018 CK 15.3±0.3a 3031±20d 1786±52d 1245±66b 3120±30b 89±44a 73.4±0.5b
PAW 14.7±0.1a 3189±112c 1954±95c 1235±85b 3175±68b -14±47a 75.0±0.9b
方差分析ANOVA 年份 (Y) ** ** ** ** * ** *
处理 (T) ** ** ** ns ns * *
年份×处理 Y×T ns ns ns ns ns ns ns

Fig. 2

Effects of post-anthesis warming on protein content in milled rice Different lowercase letters indicate significantly different at 0.05 probability level among treatments and years"

Table 5

Effects of post-anthesis warming on amino acids content in milled rice in 2018"

氨基酸
Amino acid
含量Content (mg·g-1) 相对比例Relative proportion (%)
CK PAW CK PAW
非必需氨基酸 天冬氨酸 Asp 5.67±0.14b 5.96±0.11a 9.20±0.38a 9.18±0.28a
Non-essential amino acid 谷氨酸 Glu 11.12±0.11b 11.63±0.13a 18.04±0.26a 17.90±0.23a
丝氨酸 Ser 4.22±0.04a 4.52±0.21a 6.84±0.13a 6.96±0.29a
甘氨酸 Gly 4.03±0.05b 4.40±0.05a 6.54±0.19a 6.78±0.06a
组氨酸 His 1.20±0.12a 1.28±0.10a 1.94±0.22a 1.97±0.12a
精氨酸 Arg 4.81±0.19a 4.79±0.19a 7.80±0.17a 7.37±0.13a
丙氨酸 Ala 4.23±0.12a 4.46±0.25a 6.86±0.18a 6.86±0.29a
脯氨酸 Pro 4.67±0.25a 4.67±0.07a 7.58±0.31a 7.18±0.08a
酪氨酸 Tyr 2.29±0.09b 2.97±0.15a 3.72±0.08b 4.57±0.26a
半胱氨酸 Cys 0.29±0.02a 0.28±0.01a 0.46±0.04a 0.43±0.03a
总量 Total 42.53±0.43b 44.95±0.76a
必需氨基酸 苏氨酸 Thr 2.02±0.15a 2.04±0.16a 3.28±0.17a 3.14±0.20a
Essential amino acid 缬氨酸 Val 2.39±0.12a 2.45±0.18a 3.88±0.12a 3.77±0.21a
甲硫氨酸 Met 1.20±0.08b 1.58±0.04a 1.95±0.09b 2.43±0.09a
异亮氨酸 Ile 1.93±0.06a 1.90±0.06a 3.13±0.04a 2.92±0.12a
亮氨酸 Leu 5.96±0.27a 6.18±0.23a 9.67±0.26a 9.51±0.20a
苯丙氨酸 Phe 3.78±0.28a 3.84±0.19a 6.12±0.34a 5.90±0.17a
赖氨酸 Lys 1.84±0.02a 2.03±0.07a 2.98±0.04a 3.12±0.14a
总量 Total 19.13±0.92a 20.01±0.72a
[1] CHEN J, CHEN C Q, TIAN Y L, ZHANG X, DONG W J, ZHANG B, ZHANG J, ZHENG C Y, DENG A X, SONG Z W, PENG C R, ZHANG W J . Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions. European Journal of Agronomy, 2017,82:80-92.
[2] 成臣, 曾勇军, 王祺, 谭雪明, 商庆银, 曾研华, 石庆华, 金霄 . 氮肥运筹对南方双季晚粳稻产量及品质的影响. 植物营养与肥料学报, 2018,24(5):1386-1395.
CHENG C, ZENG Y J, WANG Q, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H, JIN X . Effects of nitrogen application regime on japonica rice yield and quality of the late rice in the double rice system in southern China. Journal of Plant Nutrition and Fertilizers, 2018,24(5):260-269. (in Chinese)
[3] 张军, 张洪程, 霍中洋, 李国业, 董啸波, 花劲, 郭保卫, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁, 戴其根, 许轲, 魏海燕, 高辉 . 不同栽培方式对双季晚粳稻产量及温光利用的影响. 中国农业科学, 2013,46(10):2130-2141.
ZHANG J, ZHANG H C, HUO Z Y, LI G Y, DONG X B, HUA J, GUO B W, ZHOU P J, CHENG F H, HUANG D S, CHEN Z P, CHEN G L, DAI Q G, XU K, WEI H Y, GAO H . Effects of cultivation methods on yield and utilization of temperature and light of late japonica rice in southern double cropping rice areas. Scientia Agricultura Sinica, 2013,46(10):2130-2141. (in Chinese)
[4] PCC. Summary for Policymakers. Cambridge: Cambridge University Press, 2018: 3-4.
[5] PENG S S, PIAO S L, CIAIS P, MYNENI R B, CHEN A P, CHEVALLIER F, DOLMAN A J, JANSSENS I A, PENUELAS J, ZHANG G X, VICCA S, WAN S Q, WANG S P, ZENG H . Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature, 2013,501(7465):88-92.
[6] CHEN Y, ZHANG Z, TAO F L . Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0℃. Earth System Dynamics, 2018,9(2):543-562.
[7] XIONG D L, LING X X, HUANG J L, PENG S B . Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental and Experimental Botany, 2017, 141:1-9.
[8] YAN H L, ZHANG B L, ZHANG Y B, CHEN X L, XIONG H, MATSUI T, TIAN X H . High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Frontiers in Plant Science, 2017,7:1-9.
[9] JAGADISH S, CRAUFURD P Q, WHEELER T R . High temperature stress and spikelet fertility in rice ( Oryza sativa L.). Journal of Experimental Botany, 2007,58(7):1627-1635.
[10] SIDDIK M A, ZHANG J, CHEN J, QIAN H Y, JIANG Y, RAHEEM A K, DENG AX, SONG Z W, ZHENG C Y, ZHANG W J . Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019,106:30-38.
[11] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J . Climate trends and global crop production since 1980. Science, 2011,333(6042):616-620.
[12] REHMANI M I A, WEI G B, HUSSAIN N, DING C Q, LI G H, LIU Z H, WANG S H, DING Y F . Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Research, 2014,156:231-241.
[13] 窦志 . 灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D]. 南京: 南京农业大学, 2017.
DOU Z . Effects of free-air warming during grain filling stage on rice grain filling and quality and the regulation effects of nitrogen spikelet fertilizer[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese)
[14] DOU Z, TANG S, CHEN W Z, ZHANG H X, LI G H, LIU Z H, DING C Q, CHEN L, WANG S H, ZHANG H C, DING Y F . Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. Journal of Cereal Science, 2018,81:118-126.
[15] 杨陶陶, 胡启星, 黄山, 曾研华, 谭雪明, 曾勇军, 潘晓华, 石庆华, 张俊 . 双季优质稻产量和品质形成对开放式主动增温的响应. 中国水稻科学, 2018,32(6):572-580.
YANG T T, HU Q X, HUANG S, ZENG Y H, TAN X M, ZENG Y J, PAN X H, SHI Q H, ZHANG J . Response of yield and quality of double-cropping high quality rice cultivars under free-air temperature increasing. Chinese Journal of Rice Science, 2018,32(6):572-580. (in Chinese)
[16] MADAN P, JAGADISH S V K, CRAUFURD P Q, FITZGERALD M, LAFARGE T, WHEELER T R. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany, 2012,63(10):3843-3852.
[17] FAHAD S, HUSSAIN S, SAUD S, HASSAN S, CHAUHAN B S, KHAN F, IHSAN M Z, ULLAH A, WU C, BAJWA A A, ALHARBY H, AMANULLA H, NASIM W, SHAHZAD B, TANVEER M, HUANG J L . Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS ONE, 2016,11(7):e0159590.
[18] CHUN A, LEE H J, HAMAKER B R, JANASWAMY S . Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice ( Oryza sativa). Journal of Agricultural & Food Chemistry, 2015,63(12):3085-3093.
[19] 滕中华, 智丽, 宗学凤, 王三根, 何光华 . 高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响. 作物学报, 2008,34(9):1662-1666.
TENG Z H, ZHI L, ZENG X F, WANG S G, HE G H . Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants. Acta Agronomica Sinica, 2008,34(9):1662-1666. (in Chinese).
[20] ZHONG L J, CHENG F M, WEN X, SUN Z X, ZHANG G P . The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars. Journal of Agronomy & Crop Science, 2010,191(3):218-225.
[21] SHI W J, MUTHURAJAN R, RAHMAN H, SELVAM , PENG S B, ZOU Y B, JAGADISH K S V. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytologist, 2013,197:825-837.
[22] TANG S, CHEN W Z, LIU W Z, ZHOU Q Y, ZHANG H X, WANG S H, DING Y F . Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. Journal of Cereal Science, 2018,84:20-29.
[23] DOU Z, TANG S, LI G H, DING C Q, CHEN L, WANG S H, DING Y F . Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Science, 2017,57(4):1-10.
[24] 杨陶陶, 孙艳妮, 曾研华, 黄山, 张俊, 谭雪明, 曾勇军, 潘晓华 . 花后增温对双季优质稻产量和品质的影响. 核农学报, 2019,33(3):583-591.
YANG T T, SUN Y N, ZENG Y H, HUANG S, ZHANG J, TAN X M, ZENG Y J, PAN X H . Effect of post-anthesis warming on the grain yield and quality of double-cropped high-quality rice cultivars. Journal of Nuclear Agricultural Sciences, 2019,33(3):583-591. (in Chinese)
[25] 董文军 . 昼夜不同增温对粳稻产量和品质的影响研究[D]. 南京: 南京农业大学, 2011.
DONG W J . Effects of asymmetric warming on grain yield and quality of japonica rice[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[26] DONG W J, CHEN J, ZHANG B, TIAN Y L, ZHANG W J . Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 2011,123(3):259-265.
[27] LIU Q H, WU X, MA J Q, LI T, ZHOU X B, GUO T . Effects of high air temperature on rice grain quality and yield under field condition. Agronomy Journal, 2013,105:446-454.
[28] CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIK P C, LUO W H, LI G, XIE Y T, XIONG Y, PAN G X . Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016,22:856-874.
[29] ZHAO C, LIU B, PIAO S L, WANG X H, LOBELL D B, HUANG Y, HUANG M T, YAO Y T, BASSU S, CIAIS P, DURAND J L, ELLIOTT J, EWERT F, JANSSEDS I A, LI T, LIN E, LIU Q, MARTRE P, MULLER C, PENG S S, PENUELAS J, RUANE A C, WALLACH D, WANG T, WU D H, LIU Z, ZHU Y, ZHU Z C, ASSENG S . Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(35):9326-9331.
[30] MOHAMMED A R, TARPLEY L . Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 2010,33(2):117-123.
[31] 兰旭, 顾正栋, 丁艳菲, 王珂, 江琼, 朱诚 . 花期高温胁迫对水稻颖花生理特性的影响. 中国水稻科学, 2016,30(6):637-646.
LAN X, GU Z D, DING Y F, WANG K, JIANG Q, ZHU C . Effect of high temperature stress on physiological characteristics of spikelet of rice during flowering stage. Chinese Journal of Rice Science, 2016,30(6):637-646. (in Chinese)
[32] DONG W J, CHEN J, WANG L L, TIAN Y L, ZHANG B, LAI Y C, MENG Y, QIAN C R, GUO J . Impacts of nighttime post-anthesis warming on rice productivity and grain quality in East China. The Crop Journal, 2014,2:63-69.
[33] 李林, 沙国栋, 陆景淮 . 水稻灌浆期温光因子对稻米品质的影响. 中国农业气象, 1989,10(3):33-38.
LI L, SHA G D, LU J H . Effects of temperature and light factors on rice quality during grain filling stage. Chinese Journal of Agrometeorology, 1989,10(3):33-38. (in Chinese)
[34] CHEN C, HUANG J L, ZHU L Y, SHAH F, NIE LX, CUI K H, PENG S B . Varietal difference in the response of rice chalkiness to temperature during ripening phase across different sowing dates. Field Crops Research, 2013,151:85-91.
[35] ISHIMARU T, HORIGANE A K, IDA M, IWASAWA N, SAN-OH Y A, NAKAZONO M, NISHIZAWA N K, MASUMURA T, KONDO M, YOSHIDA M. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high- temperature stress. Journal of Cereal Science, 2009,50(2):166-174.
[36] 徐栋, 朱盈, 周磊, 韩超, 郑雷鸣, 张洪程, 魏海燕, 王珏, 廖桉桦, 蔡仕博 . 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性. 作物学报, 2018,44(10):1548-1559.
XU D, ZHU Y, ZHOU L, HAN C, ZHENG L M, ZHANG H C, WEI H Y, WANG J, LIAO A H, CAI S B . Differences in yield and grain quality among various types of indica/japonica hybrid rice and correlation between quality and climatic factors during grain filling period. Acta Agronomica Sinica, 2018,44(10):1548-1559. (in Chinese)
[37] 赵春芳, 岳红亮, 黄双杰, 周丽慧, 赵凌, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 梁文化, 路凯, 王才林 . 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019,52(5):909-920.
ZHAO C F, YUE H L, HUANG S J, ZHOU L H, ZHAO L, ZHANG Y D, CHEN T, ZHU Z, ZHAO Q Y, YAO S, LIANG W H, LU K, WANG C L . Eating quality and physicochemical properties in Nanjing rice varieties. Scientia Agricultura Sinica, 2019,52(5):909-920. (in Chinese)
[38] FITZGERALD M A, MCCOUCH S R, HALL R D . Not just a grain of rice: the quest for quality. Trends in Plant Science, 2009,14(3):133-139.
[39] JING L Q, WANG J, SHEN S B, WANG Y X, ZHU J G, WANG Y L, YANG L X . The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. Journal of the Science of Food and Agriculture, 2016,96(11):3658-3667.
[40] 陶红娟 . 灌浆结实期高温对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2007.
TAO H J . Grain yield and quality as affected by high temperature during grain filling period and physiological mechanism in rice[D]. Yangzhou: Yangzhou University, 2007. (in Chinese)
[41] 周广洽, 徐孟亮, 李训贞 . 温光对稻米蛋白质及氨基酸含量的影响. 生态学报, 1997,17(5):87-92.
ZHOU G Q, XU M L, LI X Z . Effects of ecological factors of protein and amino acids of rice. Acta Ecologica Sinica, 1997,17(5):87-92. (in Chinese)
[42] 孟亚利, 周治国 . 结实期温度与稻米品质的关系. 中国水稻科学, 1997,11(1):51-54.
MENG Y L, ZHOU Z G . Relationship between rice grain quality and temperature during seed setting period. Chinese Journal of Rice Science, 1997,11(1):51-54. (in Chinese)
[43] 董文军, 田云录, 张彬, 陈金, 张卫建 . 非对称性增温对水稻品种南粳44米质及关键酶活性的影响. 作物学报, 2011,37(5):832-841.
DONG W J, TIAN Y L, ZHANG B, CHEN J, ZAHNG W J . Effects of asymmetric warming on grain quality and related key enzymes activities for japonica rice (Nanjing 44) under FATI facility. Acta Agronomica Sinica, 2011,37(5):832-841. (in Chinese)
[44] YAMAGATA H, TANAKA K . The site of synthesis and accumulation of rice storage proteins. Plant & Cell Physiology, 1986,205(27):135-145.
[45] 谢黎虹, 罗炬, 唐绍清, 陈能, 焦桂爱, 绍高能, 魏详进, 胡培松 . 蛋白质影响水稻米饭食味品质的机理研究. 中国水稻科学, 2013,27(1):91-96.
XIE L H, LUO J, TANG S Q, CHEN N, JIAO G A, SHAO G N, WEI X J, HU P S . Proteins affect rice eating quality properties and its mechanism. Chinese Journal of Rice Science, 2013,27(1):91-96. (in Chinese)
[46] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪 . 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
SUI J M, LI X, YAN S, YAN C J, ZHANG R, TANG S Z, LU J F, CHEN Z X, GU M H . Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica, 2005,38(4):657-663. (in Chinese).
[1] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[2] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[3] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[4] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[5] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[8] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[9] LIU QiuYuan,ZHOU Lei,TIAN JinYu,CHENG Shuang,TAO Yu,XING ZhiPeng,LIU GuoDong,WEI HaiYan,ZHANG HongCheng. Comprehensive Evaluation of Nitrogen Efficiency and Screening of Varieties with High Grain Yield and High Nitrogen Efficiency of Inbred Middle-Ripe Japonica Rice in the Middle and Lower Reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409.
[10] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[11] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[12] CHU Guang,XU Ran,CHEN Song,XU ChunMei,WANG DanYing,ZHANG XiuFu. Effects of Alternate Wetting and Soil Drying on the Grain Yield and Water Use Efficiency of Indica-Japonica Hybrid Rice and Its Physiological Bases [J]. Scientia Agricultura Sinica, 2021, 54(7): 1499-1511.
[13] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[14] MA Yue,TIAN Yi,YUAN AiJing,WANG HaoLin,LI YongHua,HUANG TingMiao,HUANG Ning,LI Chao,DANG HaiYan,QIU WeiHong,HE Gang,WANG ZhaoHui,SHI Mei. Response of Wheat Yield and Protein Concentration to Soil Nitrate in Northern Wheat Production Region of China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3903-3918.
[15] FEI ShuaiPeng,YU XiaoLong,LAN Ming,LI Lei,XIA XianChun,HE ZhongHu,XIAO YongGui. Research on Winter Wheat Yield Estimation Based on Hyperspectral Remote Sensing and Ensemble Learning Method [J]. Scientia Agricultura Sinica, 2021, 54(16): 3417-3427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!