Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4540-4554.doi: 10.3864/j.issn.0578-1752.2019.24.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity

YanHua CHEN1,2,Le WANG1,ShuXiang ZHANG1(),Ning GUO3,ChangBao MA4,ChunHua LI1(),MingGang XU1,GuoYuan ZOU2   

  1. 1 Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097
    3 Beijing Soil Fertilizer Extension Service Station, Beijing 100029
    4 Center of Arable Land Quality Monitoring and Protection, Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2019-07-20 Accepted:2019-11-06 Online:2019-12-16 Published:2020-01-15
  • Contact: ShuXiang ZHANG,ChunHua LI E-mail:zhangshuxiang@caas.cn;lichunhua@caas.cn

Abstract:

【Objective】The quality of cultivated land is a key factor affecting soil productivity, which serves also as scientific basis for rational fertilization. Cinnamon soil is the main soil type at the production area of wheat and corn in China. This study examined the current status of cultivated land quality and the evolution characteristics of cinnamon soil during the past 31 years (1988-2018). Though considering the evolution of fertilizer application rate, their influence on productivity was studied, and the guidance for reducing fertilizer input and increasing efficiency in cinnamon soil area was proposed.【Method】Using the data of 103 long-term (31 years) location test points in China, the evolution of cinnamon soil cultivated land quality was analyzed by combining physical and chemical indexes. The factors influencing the yield were compared through the redundancy analysis (RDA). Based on these results, reasonable suggestions were put forward to reduce fertilizer input and increase efficiency in cinnamon soil area.【Result】(1) The present situation and evolution of soil physical and chemical properties in cinnamon soil area were shown in the study. Specifically, the average values of organic matter content, available phosphorus and available potassium in 2018 were 17.9 g·kg -1, 29.2 mg·kg -1-and 164 mg·kg -1, respectively, which represented an increase of 21.2%, 200.9% and 52.0% during 31years, respectively. The average values of total nitrogen and slow available potassium in 2018 were 1.1 g·kg -1 and 945 mg·kg -1, respectively, which remained relatively stable during the monitoring period. The contents of soil secondary elements and micronutrient elements and heavy metals were in an acceptable range. The pH was reduced by 0.3 unit. Topsoil thickness was 21.9 cm and bulk density was 1.33 g·cm -3, which belonged to the middle level. (2) The fertilizer application rate in cinnamon soil area was 730.2 kg·hm -2 in 2018. The proportion of N (N):P (P2O5):K (K2O) was about 2:1:1, and the proportion of chemical fertilizer to organic fertilizer was about 3.45:1. The nitrogen fertilizer application rate was 378.9 kg·hm -2, which was stable during the past 31 years. The application rate of phosphate and potassium fertilizer decreased by 24.1% and 50.8%, respectively. (3) The wheat yield showed an upward trend during 31 years, and the maximum reached 6 651 kg·hm -2 at the end of monitoring, which was 27.6% higher than the value at the initial stage. The corn yield was stable, reaching 8 851 kg·hm -2 at the end of monitoring. The contribution rate of soil fertility in wheat season and corn season was 49.0% and 59.6%, respectively. The yield was influenced by soil physical factors, including the thickness of plough layer (which could explain the wheat production for 2.7%, denoted as explanation rate), bulk density (explanation rates of wheat and corn productions for 1.2% and 1.5%, respectively) and chemical index, such as organic matter explanation rates of wheat and corn productions for 2% and 1.7%, respectively, and available phosphorus (explanation rate of corn for 3.6%). The explanation rates of potassium fertilizer were the highest for wheat and corn productions, which reached 5.6% and 6%, respectively. The explanation rates of phosphorus fertilizer for wheat yield (1.3%) and of nitrogen fertilizer for corn yield (1.3%) were also relatively high.【Conclusion】The cultivated land quality in cinnamon soil area has been improved in 31 years, but the overall fertility was low and the physical properties were in middle level. Considering the impact of land quality on productivity, different fertilization schemes needed to be formulated for wheat and corn. Both of which needed to increase the input of potassium fertilizers, and focused on ensuring the supply of phosphorus fertilizers for wheat and nitrogen fertilizers for corn. Physical indicators needed to be highly concerned. The topsoil thickness and bulk density were at a medium level, but there was no need to continue to optimize, and maintaining the status quo was more conductive to obtaining high yield.

Key words: cinnamon soil, cultivated land quality, soil physical properties, soil chemical properties, crop yield

Table 1

Properties of original soils of every site"

建站时间
Time
建站
数量
Number
分布省份及对应数量
Province-Number
种植制度
Crop rotation
作物类别
Crop type
酸碱度
pH
有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
有效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(mg·kg-1)
缓效钾
Slow available potassium
(mg·kg-1)
1988 6 河北-4,山东-2
Hebei-4,Shandong-2
一年两熟
Two crops a year
小麦、玉米
Wheat, Corn
6.7-8.3 8.2-15.1 0.56-0.87 1.5-12.9 69.0-134 /
1997 8 天津-3,山西-3,辽宁-2
Tianjin-2, Shanxi-3, Liaoning-2
一年两熟或一年
一熟
Two crops a year/ One crop a year
小麦、玉米、芹菜、绿豆、花椰菜
Wheat, Corn, Celery, Mung bean, Broccoli
6.6-8.2 16.8-25.5 0.85-1.23 7.6-16.2 81.0-137 474-811
1998 30 北京-2,河北-6,山西-3,内蒙-2,江苏-4,安徽-2,山东-2
Beijing-2, Hebei-6, Shanxi- 3, Inner Mongolia-2, Jiangsu- 4, Anhui-2, Shandong-2
一年两熟或一年
一熟
Two crops a year/ One crop a year
小麦、玉米、菜豆、芥蓝、马铃薯、棉花、水稻
Wheat, Corn, Bean, Cabbage mustard, Potato, Cotton, Rice
6.1-8.8 5.1-32.4 0.30-2.00 4.8-43.0 37.5-184 332-1394

Fig. 1

Content and evolution of conventional fertility indexes Solid line in box represents the median, the hollow circle represents the average value, the bottom edge line and the upper edge line represent the lower quartile and the upper quartile respectively, and the asterisk represents the abnormal value. Lowercase indicates the difference significance among different monitoring periods at the 0.05 level. The following is the same as this. A is listed as the present situation of each fertility index in 2018, which is the proportion of monitoring points in each interval, and B is listed as the evolution of each fertility index"

Table 2

Physical properties of cinnamon soil (2015—2018)"

物理指标
Physical property
时间
Year
样本数
N
平均值
Ave
标准误
SE
中位值
Median
标准差
SD
最小值
Min
最大值
Max
等级
Level
耕层厚度
Topsoil thikness
(cm)
2015 24 21.7 0.99 20 4.87 14.00 30.00 3级/中 Level3/ Medium
2016 91 21.7 0.50 20 4.78 15.00 40.00 3级/中 Level3/ Medium
2017 99 22.5 0.54 20 5.36 15.00 45.00 3级/中 Level3/ Medium
2018 100 21.6 0.45 20 4.48 15.00 42.00 3级/中 Level3/ Medium
容重
Bulk density
(g·cm-3)
2015 24 1.32 0.02 1.30 0.08 1.18 1.48 3级/中 Level3/ Medium
2016 86 1.33 0.01 1.33 0.12 1.08 1.70 3级/中 Level3/ Medium
2017 93 1.33 0.01 1.33 0.13 1.07 1.70 3级/中 Level3/ Medium
2018 94 1.33 0.01 1.33 0.13 1.08 1.70 3级/中 Level3/ Medium

Table 3

Soil secondary—micronutrient element and heavy metal content of cinnamon soil (2016)"

指标 Index 样本数 N 平均值 Ave 标准误 SE 中位值 Median 标准差 SD 最小值 Min 最大值 Max
钙Ca (cmol·kg-1) 84 28.61 2.64 22.85 24.24 0.15 91.70
镁Mg (cmol·kg-1) 86 2.99 0.18 2.96 1.65 0.50 11.78
硫S (mg·kg-1) 86 30.95 4.51 19.83 41.85 0.13 300.00
硅Si (mg·kg-1) 88 142.50 9.18 134.82 86.14 0.12 357.56
铁Fe (mg·kg-1) 89 22.97 3.38 10.40 31.84 2.30 141.00
锰Mn (mg·kg-1) 89 14.68 1.13 11.20 10.68 2.00 64.70
铜Cu (mg·kg-1) 89 1.59 0.08 1.39 0.78 0.47 5.60
锌Zn (mg·kg-1) 89 2.37 0.27 1.68 2.57 0.16 18.87
硼B (mg·kg-1) 89 0.69 0.05 0.57 0.45 0.03 2.56
钼Mo (mg·kg-1) 89 0.17 0.01 0.12 0.14 0.00 0.86
铬Cr (mg·kg-1) 87 64.44 1.92 62.60 17.92 23.23 133.00
镉Cd (mg·kg-1) 85 0.19 0.01 0.14 0.14 0.06 0.77
铅 Pb (mg·kg-1) 84 20.04 0.76 19.20 7.00 10.00 49.70
砷 As (mg·kg-1) 87 10.85 0.38 11.00 3.57 2.92 32.20
汞 Hg (mg·kg-1) 87 0.06 0.01 0.05 0.05 0.02 0.38

Fig. 2

The fertilizer application rate in cinnamon soil area in 2018 C-N: Chemical fertilizer nitrogen, C-P: Chemical fertilizer phosphorus, C-K: Chemical fertilizer potassium, O-N: Organic fertilizer nitrogen, O-P: Organic fertilizer phosphorus, O-K: Organic fertilizer potassium"

Fig. 3

Amount and ratio of different fertilizer in cinnamon soil area"

Fig. 4

Yield change of wheat and corn under long-term fertilizer application in cinnamon soil area"

Fig. 5

Effect of soil fertility on yield"

Fig. 6

RDA analysis of the relationship between cultivated land quality crop yield,fertilizer application and crop yield NF, PF and KF represent N P K fertilizer application rate respectively. TST: Topsoil thickness, BD: Bulk density, SOM: Soil organic matter, Olsen-P: Soil available P, AK: Soil available K, SAK: Soil slow available K. 1 and 2 on the back of the index represent the effect of the influencing factors on the wheat yield and the corn yield respectively"

[1] 吴大放, 刘艳艳, 董玉祥, 陈梅英, 王朝晖 . 我国耕地数量、质量与空间变化研究综述. 热带地理, 2010,30(2):108-113.
WU D F, LIU Y Y, DONG Y X, CHEN M Y, WANG Z H . Review on the research of quantity, quality and spatial change of cultivated land in China. Tropical Geography, 2010,30(2):108-113. (in Chinese)
[2] 温良友, 孔祥斌, 辛芸娜, 孙晓兵 . 对耕地质量内涵的再认识. 中国农业大学学报, 2019,24(3):156-164.
WEN L Y, KONG X B, XIN Y N, SUN X B . Evolution of cultivated land quality connotation and its recognition. Journal of China Agricultural University, 2019,24(3):156-164. (in Chinese)
[3] 田有国, 张淑香, 刘景, 徐明岗, 李昆 . 褐土耕地肥力质量与作物产量的变化及影响因素分析. 植物营养与肥料学报, 2009,16(1):98-104.
TIAN Y G, ZHANG S X, LIU J, XU M G, LI K . Change of soil fertility index and crop yield of cinnamon soil and its affecting factors. Plant Nutrition and Fertilizer Science, 2009,16(1):98-104. (in Chinese)
[4] 陈延华, 王乐, 张淑香, 任意, 李春花, 徐明岗, 赵同科 . 长期施肥下褐土生产力的演变及其影响因素. 植物营养与肥料学报, 2018,24(6):1445-1455.
CHEN Y H, WANG L, ZHANG S X, REN Y, LI C H, XU M G, ZHAO T K . Evolution of cinnamon soil productivity and the main influencing factors under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1445-1455. (in Chinese)
[5] TONG C L, HALL C A S, WANG H Q . Land use change in rice, wheat and maize production in China (1961-1998). Agriculture Ecosystems and Environment, 2003,95(2/3):523-536.
[6] RONDANINI D P, GOMEZ N V, AGOSTI M B, MIRALLES D J . Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy, 2012,37(1):56-65.
[7] LI Y X, ZHANG W F, MA L, WU L, SHEN J B, DAVIES W J, OENEMA O, ZHANG F S, DOU Z X . An analysis of China's grain production: Looking back and looking forward. Food & Energy Security, 2014,3(1):19-32.
[8] 林治安, 赵秉强, 袁亮 , HWAT BING-SO. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009,42(8):2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S . Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009,42(8):2809-2819. (in Chinese)
[9] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[10] LIU Q P, GUO Y L, GIESY J P .Assessment on ecological safety of farmland fertilization of China. Advanced Materials Research, 2014(962/965):2170-2174.
[11] 赵秀娟, 任意, 张淑香 . 25年来褐土区土壤养分演变特征. 核农学报, 2017,31(8):1647-1655.
ZHAO X J, REN Y, ZHANG S X . Evolution characteristics of cinnamon soil nutrients in 25 years. Journal of Nuclear Agricultural Sciences, 2017,31(8):1647-1655. (in Chinese)
[12] 李建军, 辛景树, 张会民, 段建军, 任意, 孙楠, 徐明岗 . 长江中下游粮食主产区25 年来稻田土壤养分演变特征. 植物营养与肥料学报, 2015,21(1):92-103.
LI J J, XIN J S, ZHANG H M, DUAN J J, REN Y, SUN N, XU M G . Evolution characteristics of soil nutrients in the main rice production regions, the middle-lower reach of Yangtze River of China. Journal of Plant Nutrition and Fertilizer, 2015,21(1):92-103. (in Chinese)
[13] 李忠芳, 张水清, 李慧, 孙楠, 逄焕成, 娄翼来, 徐明岗 . 长期施肥下我国水稻土基础地力变化趋势. 植物营养与肥料学报, 2015,21(6):1394-1402.
LI Z F, ZHANG S Q, LI H, SUN N, PANG H C, LOU Y L, XU M G . Trends of basic soil productivity in paddy soil under long-term fertilization in China. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1394-1402. (in Chinese)
[14] 黄兴成, 石孝均, 李渝, 张雅蓉, 刘彦伶, 张文安, 蒋太明 . 基础地力对黄壤区粮油高产、稳产和可持续生产的影响. 中国农业科学, 2017,50(2):300-312.
HUANG X C, SHI X J, LI Y, ZHANG Y R, LIU Y L, ZHANG W A, JIANG T M . Inherent soil productivity effect on high, steady and sustainable yield of grain and oil crops in yellow soil region. Scientia Agricultura Sinica, 2017,50(2):300-312. (in Chinese)
[15] 郝小雨, 周宝库, 马星竹, 高中超 . 长期不同施肥措施下黑土作物产量与养分平衡特征. 农业工程学报, 2015,31(16):178-185.
HAO X Y, ZHOU B K, MA X Z, GAO Z C . Characteristics of crop yield and nutrient balance under different long-term fertilization practices in black soil. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(16):178-185. (in Chinese)
[16] 蔡泽江, 孙楠, 王伯仁, 徐明岗, 黄晶, 张会民 . 长期施肥对红壤 pH、作物产量及氮 、磷 、钾养分吸收的影响. 植物营养与肥料学报, 2011,17(1):71-78.
CAI Z J, SUN N, WANG B R, XU M G, HUANG J, ZHANG H M . Effects of long-term fertilization on pH of red soil crop yields and uptakes of nitrogen,phosphorous and potassium. Journal of Plant Nutrition and Fertilizer, 2011,17(1):71-78. (in Chinese)
[17] 郑存德 . 土壤物理性质对玉米生长影响及高产农田土壤物理特征研究[D]. 沈阳: 沈阳农业大学, 2012.
ZHENG C D . Research of physical properties on maize growth and properties of high yield maize farmland[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese)
[18] 张玉娇, 王浩, 王淑兰, 王瑞, 李军, 王小利 . 小麦/玉米轮作旱地长期轮耕的保墒增产效应. 农业工程学报, 2018,34(12):126-136.
ZHANG Y J, WANG H, WANG S L, WANG R, LI J, WANG X L . Soil moisture preservation and improving of crop yield in dry land under long-term wheat/maize rotation. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(12):126-136. (in Chinese)
[19] 申冠宇, 杨习文, 周苏玫, 梅晶晶, 陈旭, 彭宏扬, 蒋向, 贺德先 . 土壤耕作技术对小麦出苗质量、根系功能及粒重的影响. 中国农业科学, 2019,52(12):2042-2055.
SHEN G Y, YANG X W, ZHOU S M, MEI J J, CHEN X, PENG H Y, JIANG X, HE D X . Impacts of soil tillage techniques on seedling quality, root function and grain weight in wheat. Scientia Agricultura Sinica, 2019,52(12):2042-2055. (in Chinese)
[20] 李潮海, 李胜利, 王群, 郝四平, 韩锦峰 . 下层土壤容重对玉米根系生长及吸收活力的影响. 中国农业科学, 2005,38(8):1706-1711.
LI C H, LI S L, WANG Q, HAO S P, HAN J F . A study on corn root growth and activities at different soil layers with special bulk density. Scientia Agricultura Sinica, 2005,38(8):1706-1711. (in Chinese)
[21] 韩成卫, 孔晓民, 宋春林, 吴秋平, 曾苏明, 蒋飞, 孙泽强 . 山东省褐土土壤容重对玉米生长发育及产量形成的影响. 中国土壤与肥料, 2017(6):143-148.
HAN C W, KONG X M, SONG C L, WU Q P, ZENG S M, JIANG F, SUN Z Q .Effects of different soil bulk density on growth and yield of corn under cinnamon soil in Shandong province. Soils and Fertilizers Sciences in China, 2017(6):143-148. (in Chinese)
[22] 高建胜, 董国豪, 郭建军, 郭良海, 郭智慧, 崔慧妮 . 耕层厚度对冬小麦农艺性状及产量的影响. 山东农业科学, 2018,50(8):54-57.
GAO J S, DONG G H, GUO J J, GUO L H, GUO Z H, CUI H N . Effects of topsoil thickness on agronomic traits and yield of winter wheat. Journal of Shandong Agricultural Sciences, 2018,50(8):54-57. (in Chinese)
[23] 王育红, 席玲玲, 周新, 沈东风 . 深耕对夏玉米产量形成及土壤理化性质的影响. 山西农业大学学报(自然科学版), 2018,38(2):9-14.
WANG Y H, XI L L, ZHOU X, SHENG D F . Effects of deep tillage treatments on summer maize yield and soil physicochemical properties. Journal of Shanxi Agriculture University (Natural Science Edition), 2018,38(2):9-14. (in Chinese)
[24] 鲁如坤 . 土壤农业化学分析方法. 北京:中国农业科技出版社, 1999.
LU R K. Analytical Methods for Soil and Agro-chemistry.. Beijing:China Agricutural Science and Technology Press, 1999. (in Chinese)
[25] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
National Soil Census Office. Chinese Soil.. Beijing:China Agricutural Press, 1998. (in Chinese)
[26] 姜存仓 . 果园测土配方施肥技术. 北京:化学工业出版社, 2011: 149.
JIANG C C. Soil Test Formula Fertilization Technology in Orchard. Beijing:Chemical Industry Press, 2011: 149. (in Chinese)
[27] 生态环境部国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB15618—2018. 北京: 中国环境科学出版社, 2018.
State Administration of Market Supervision and Administration, Ministry of Ecological Environment. Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land: GB15618—2018.. Beijing: China Environmental Science Press, 2018. (in Chinese)
[28] ZHANG H M, WANG B R, XU M G, FAN T Lu . Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere, 2009,19(2):199-207.
[29] 黄兴成, 李渝, 白怡婧, 张雅蓉, 刘彦伶, 张文安, 蒋太明 . 长期不同施肥下黄壤综合肥力演变及作物产量响应. 植物营养与肥料学报, 2018,24(6):1484-1491.
HUANG X C, LI Y, BAI Y J, ZHANG Y Y, LIU Y Y, ZHANG W A, JIANG T M . Evolution of yellow soil fertility under long-term fertilization and response of corp yield. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1484-1491. (in Chinese)
[30] 宋永林, 唐华俊, 李小平 . 长期施肥对作物产量及褐潮土有机质变化的影响研究. 华北农学报, 2007,22(增刊):100-105.
SONG Y L, TANG H J, LI X P . The effects of long-term fertilization on crop yield and aqui-cinnamon soil organic matter. Acta Agriculture Boreali-Simica, 2007,22(Supplement):100-105. (in Chinese)
[31] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良 . 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018,51(12):2336-2347.
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L . Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018,51(12):2336-2347. (in Chinese)
[32] ZHAO S C, HE P, QIU S J, JIA L L, LIU M C, JIN J Y, JOHNSTON A M . Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Research, 2014,169:116-122.
[33] 汤建东, 叶细养 . 土壤肥力长期定位试验研究初报. 土壤与环境, 1999,8(2):113-116.
TANG J D, YE X Y . A preliminary report on long-term stationary experiment on soil fertility. Soil and Environmental Sciences, 1999,8(2):113-116. (in Chinese)
[34] 汤勇华, 黄耀 . 中国大陆主要粮食作物地力贡献率及其影响因素的统计分析. 农业环境科学学报, 2008,27(4):1283-1289.
TANG Y H, HUANG Y . Statistical analysis of the percentage of soil fertility contribution to grain crop yield and driving factors in mainland China. Journal of Agro-Environment Science, 2008,27(4):1283-1289. (in Chinese)
[35] 沈善敏, 殷秀岩, 宇万太, 张璐, 陈欣, 刘鸿翔, 王德禄, 王凯荣, 周卫军, 谢小立 . 农业生态系统养分循环再利用作物产量增益的地理分异. 应用生态学报, 1998,9(4):379-385.
SHEN S M, YIN X Y, YU W T, ZHANG L, CHEN X, LIU H X, WANG D L, WANG K R, ZHOU W J, XIE X L . Geographic differentiation of yield increase efficiency caused by recycled nutrients in agroecosystems. Chinese Journal of Applied Ecology, 1998,9(4):379-385. (in Chinese)
[36] 徐明岗, 梁国庆, 张夫道 . 中国土壤肥力演变. 北京:中国农业科学技术出版社, 2006.
XU M G, LIANG G Q, ZHANG F D. Variation of Soil Fertility in China. Beijing:China Agricultural Science and Technology Press, 2006. (in Chinese)
[37] 张婧婷 . 多因子变化对中国主要作物产量和温室气体排放的影响研究[D]. 北京: 中国农业大学, 2017.
ZHANG J T . Influence of multifactor environmental changes on main crop yields and greenhouse gases emissions in China[D] . Beijing: China Agricultural University, 2017. (in Chinese)
[38] 鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平 . 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015,52(3):597-606.
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P . Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double- rice system. Acta Pedologica Sinica, 2015,52(3):597-606. (in Chinese)
[39] 李忠芳, 徐明岗, 张会民, 张文菊, 高静 . 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009,43(7):2407-2414.
LI Z F, XU M G, ZHANG H M, ZHANG W J, GAO J . Grain yield trends of different food crops under long-term fertilization in China. Scientia Agricultura Sinica, 2009,43(7):2407-2414. (in Chinese)
[40] 段兴武, 谢云, 冯艳杰, 王晓岚, 高晓飞 . 东北黑土区土壤生产力评价方法研究. 中国农业科学, 2009,42(5):1656-1664.
DUAN X W, XIE Y, FENG Y J, WANG X L, GAO X F . Study on the method of soil productivity assessment in northeast black soil regions of China. Scientia Agricultura Sinica, 2009,42(5):1656-1664. (in Chinese)
[41] 康日峰, 任意, 吴会军, 张淑香 . 26 年来东北黑土区土壤养分演变特征. 中国农业科学, 2016,49(11):2113-2125.
KANG R F, REN Y, WU H J, ZHANG S X . Changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016,49(11):2113-2125. (in Chinese)
[42] 李昊昱, 孟兆良, 庞党伟, 陈金, 侯永坤, 崔海兴, 金敏, 王振林, 李勇 . 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019,45(6):893-903.
LI H Y, MENG Z L, PANG D W, CHEN J, HOU Y K, CUI H X, JIN M, WANG Z L, LI Y . Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland. Acta Agronomica Sinica, 2019,45(6):893-903. (in Chinese)
[43] SHARPLEY A, JARVIE H P, BUDA A, MAY L, SPEARS B, KLEINMAN P . Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 2013,42(5):1308-1326.
[44] MADONALD G K, BENNETT E M, POTTER P A, CARPENTER R S . Agronomic phosphorus imbalances across the world’s croplands. PNAS, 2011,108(7):3086-3091.
[45] MA J, HE P, XU X, HE W T, LIU Y X, YANG F Q, CHEN F, LI S T, TU S H, JIN J Y, JOHNSTON A M, ZHOU W . Temporal and spatial changes in soil available phosphorus in China (1990-2012). Field Crops Research, 2016,192:13-20.
[46] YAN Z, LIU P, LI Y, MA L, ALVA A, DOU Z, CHEN Q, ZHANG F . Phosphorus in China’s intensive vegetable production systems: overfertilization, soil enrichment, and environmental implications. Journal of Environmental Quality, 2013,42(4):982-989.
[47] WU Q H, ZHANG S X, REN Y, ZHAN X Y, XU M G, FENG G . Soil phosphorus management based on the agronomic critical value of Olsen P. Communications in Soil Science and Plant Analysis, 2018,49(8):934-944.
[48] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S . The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013,372(1/2):27-37.
[1] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[2] LI YuHao,WANG HongYe,CUI ZhenLing,YING Hao,QU XiaoLin,ZHANG JunDa,WANG XinYu. Spatial-Temporal Variation of Cultivated Land Soil Basic Productivity for Main Food Crops in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3960-3969.
[3] WeiLi ZHANG,H KOLBE,RenLian ZHANG,DingXiang ZHANG,ZhanGuo BAI,Jing ZHANG,HuaDing SHI. Overview of Soil Survey Works in Main Countries of World [J]. Scientia Agricultura Sinica, 2022, 55(18): 3565-3583.
[4] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[5] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[6] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[7] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[8] XinRun YANG,Bei XU,ZhiFeng HE,Jing WU,RuiHua ZHUANG,Chao MA,RuShan CHAI,Kianpoor Kalkhajeh Yusef,XinXin YE,Lin ZHU. Impacts of Decomposing Microorganism Inoculum on Straw Decomposition and Crop Yield in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(7): 1359-1367.
[9] LI JingYu,LI Qian,WU XuePing,WU HuiJun,SONG XiaoJun,ZHANG YongQing,LIU XiaoTong,DING WeiTing,ZHANG MengNi,ZHENG FengJun. Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool [J]. Scientia Agricultura Sinica, 2020, 53(18): 3729-3740.
[10] WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240.
[11] KunKun WANG,ShiPeng LIAO,Tao REN,XiaoKun LI,RiHuan CONG,JianWei LU. Effect of Continuous Straw Returning on Soil Phosphorus Availability and Crop Phosphorus Utilization Efficiency of Oilseed Rape-Rice Rotation [J]. Scientia Agricultura Sinica, 2020, 53(1): 94-104.
[12] GAI XiaPu,LIU HongBin,YANG Bo,WANG HongYuan,ZHAI LiMei,LEI QiuLiang,WU ShuXia,REN TianZhi. Responses of Crop Yields, Soil Carbon and Nitrogen Stocks to Additional Application of Organic Materials in Different Fertilization Years [J]. Scientia Agricultura Sinica, 2019, 52(4): 676-689.
[13] QIANG XiaoMan,ZHANG Kai,MI ZhaoRong,LIU ZhanDong,WANG WanNing,SUN JingSheng. Effects of Subsoiling and Irrigation Frequency on Water Saving and Yield Increasing of Winter Wheat and Summer Maize in the Huang-Huai-Hai Plain [J]. Scientia Agricultura Sinica, 2019, 52(3): 491-502.
[14] LI Ge, BAI YouLu, YANG LiPing, LU YanLi, WANG Lei, ZHANG JingJing, ZHANG YinJie. Effect of Drip Fertigation on Summer Maize in North China [J]. Scientia Agricultura Sinica, 2019, 52(11): 1930-1941.
[15] YANG ChenLu, LIU LanQing, WANG WeiYu, REN GuangXin, FENG YongZhong, YANG GaiHe. Effects of Straw Returning in Matching and Nitrogen Fertilizer on Crop Yields, Water and Nitrogen Utilization Under Wheat-Maize Multiple Cropping System [J]. Scientia Agricultura Sinica, 2018, 51(9): 1664-1680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!