Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3333-3343.doi: 10.3864/j.issn.0578-1752.2020.16.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic Relationship and Structure Analysis of 15 Species of Malus Mill. Based on SNP Markers

GAO Yuan(),WANG DaJiang,WANG Kun(),CONG PeiHua(),LI LianWen,PIAO JiCheng   

  1. Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Xingcheng 125100, Liaoning
  • Received:2019-12-30 Accepted:2020-06-10 Online:2020-08-16 Published:2020-08-27
  • Contact: Kun WANG,PeiHua CONG E-mail:gaoyuan02@caas.cn;wangkun5488@163.com;congph@163.com

Abstract:

【Objective】 Based on SNP markers developed by high-throughput, the simplified genomic sequencing technology in the whole genome, the genetic relationship and population genetic structure of native germplasms of Malus Mill. in China were analyzed, which provided a theoretical basis for the origin, evolution and systematic classification of Malus Mill.【Method】Based on obtained SLAF tags, BWA software was used to locate them in the reference genome and to obtain the polymorphic SLAF tags. GATK and SAMtool were employed to develop SNPs in polymorphic SLAF tags and screened SNPs obtained by two methods as SNP markers data set. According to the integrity > 0.94 and the minor allele frequency (MAF) > 0.05, SNPs with polymorphism were screened. Based on the screening of polymorphic SNPs, the NJ (neighbor joining) algorithm of MEGA 7 was used to construct phylogenetic trees of different species of Malus Mill. The genetic structure was analyzed by using the software of admixture. Assuming that the number of clusters (k) was 1-15. The best K value was determined according to cross validation error rate, and the genetic structure among and within species of Malus Mill. was analyzed.【Result】427 accessions of Malus Mill. were sequenced by SLAF-seq, and 586 454 SLAF tags were obtained, including 463 612 polymorphic SLAF tags. 46 460 polymorphic single nucleotide (SNP) loci were obtained through sequence alignment analysis and screening. Phylogenetic tree of different species of Malus Mill. was constructed based on these SNP loci, and population structure was analyzed. In phylogenetic analysis, 15 species of Malus Mill. were divided into 4 groups, and K = 5 and K = 14 were key points in the genetic structure analysis. According to the results of two methods, 15 species of Malus Mill. could be divided into 4 basic groups, which were the group of Malus baccata, the group of Malus sieversii and a few accessions of Malus domestica subsp.chinensis, the group of Malus toringoides, Malus transitoria, Malus kansuensis, Malus komarovii, Malus yunnanensis and Malus ombrophila, and the group of Malus domestica subsp. chinensis, Malus robusta, Malus asiatica and Malus prunifolia. There were gene backgrounds of Malus sieversii and Malus baccata in some germplasms of Malus domestica subsp. chinensis, but there were also some germplasms of Malus domestica subsp. Chinensis, which could independently represent the group gene pool, and the gene pool was not involved in Malus sieversii, but closely related to Malus baccata, Malus asiatica and Malus prunifolia.【Conclusion】The rapid discovery of 46 460 polymorphic SNP markers covering the whole genome by SLAF technology could effectively study on the genetic relationship and structure within and among species of Malus Mill. in China, and provide references for identification and evaluation, genetic diversity, systematic classification, origin and evolution of germplasm resources of Malus Mill. 15 species of Malus Mill. could be divided into 4 basic groups, and the classification of wild and cultivated species of Malus Mill. was obvious. The genetic relationship between Malus domestica subsp. chinensis and other cultivated species was close.

Key words: Malus Mill., SNP, genetic relationship, genetic structure

Table 1

Fifteen species of Malus Mill. germplasm resources for SLAF-seq analysis"

序号
Code
供试种
Species
来源地
Origin
数量
Number
序号
Code
供试种
Species
来源地
Origin
数量
Number
1 新疆野苹果 Malus sieversii 新疆 Xinjiang 161 5 花红 Malus asiatica 黑龙江 Heilongjiang 7
2 中国苹果
Malus domestica subsp.chinensis
新疆 Xinjiang 2 甘肃 Gansu 1
黑龙江 Heilongjiang 2 河北 Hebei 9
甘肃 Gansu 4 云南 Yunnan 1
河北 Hebei 14 6 八棱海棠 Malus robusta 河北 Hebei 32
山西 Shanxi 10 山西 Shanxi 1
山东 Shandong 1 吉林 Jilin 1
3 山荆子 Malus baccata 黑龙江 Heilongjiang 47 7 陇东海棠 Malus kansuensis 甘肃 Gansu 4
甘肃 Gansu 3 8 垂丝海棠 Malus halliana 甘肃 Gansu 9
河北 Hebei 10 9 山楂海棠 Malus komarovii 吉林 Jilin 1
山西 Shanxi 14 10 变叶海棠 Malus toringoides 四川 Sichuan 2
内蒙古 Inner Mongolia 41 云南 Yunnan 1
吉林 Jilin 19 11 花叶海棠 Malus transitoria 四川 Sichuan 1
4 楸子 Malus prunifolia 黑龙江 Heilongjiang 5 12 丽江山荆子 Malus rockii 云南 Yunnan 1
甘肃 Gansu 4 13 滇池海棠 Malus yunnanensis 云南 Yunnan 1
河北 Hebei 2 14 湖北海棠 Malus hupehensis 云南 Yunnan 1
山西 Shanxi 8 15 沧江海棠 Malus ombrophila 云南 Yunnan 1
内蒙古 Inner Mongolia 1
吉林 Jilin 5

Fig. 1

The distribution of polymorphic SNP in 17 chromosomes Every yellow band indicated one chromosome, and black line indicated the position of SNP. The abscissa is the length of the chromosome, and the genome was divided by every 1M. The darker position represented more SNPs, and the darker regions showed the centralized distribution area of SNPs"

Table 2

Genetic distance of 15 species of Malus Mill. based on SNP"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0.000
2 0.030 0.000
3 0.970 1.000 0.000
4 0.600 0.606 0.394 0.000
5 0.030 0.000 1.000 0.606 0.000
6 0.030 0.000 1.000 0.606 0.000 0.000
7 0.030 0.000 1.000 0.606 0.000 0.000 0.000
8 0.187 0.167 0.833 0.571 0.167 0.167 0.167 0.000
9 0.030 0.000 1.000 0.606 0.000 0.000 0.000 0.167 0.000
10 0.953 0.981 0.019 0.398 0.981 0.981 0.981 0.821 0.981 0.000
11 0.143 0.120 0.880 0.581 0.120 0.120 0.120 0.247 0.120 0.866 0.000
12 0.030 0.000 1.000 0.606 0.000 0.000 0.000 0.167 0.000 0.981 0.120 0.000
13 0.134 0.111 0.889 0.582 0.111 0.111 0.111 0.241 0.111 0.874 0.204 0.111 0.000
14 0.279 0.265 0.735 0.550 0.265 0.265 0.265 0.343 0.265 0.727 0.321 0.265 0.317 0.000
15 0.030 0.000 1.000 0.606 0.000 0.000 0.000 0.167 0.000 0.981 0.120 0.000 0.111 0.265 0.000

Fig. 2

Polygenetic tree of 15 species of Malus Mill. based on SNP"

Fig. 3

Cross validation error rates corresponding to every K values"

Fig. 4

The genetic structure of 427 accessions of 15 species of Malus Mill. (K=5 and K=14) Each bar represents one accession, and the abscissa is the code of germplasms corresponding to each bar. One color represents one group, and the ordinate is Q value 0.00-1.00"

[1] 俞德俊. 中国果树分类学. 北京: 中国农业出版社, 1979: 91.
YU D J. Taxonomy of China Fruits. Beijing: China Agriculture Press, 1979: 91. (in Chinese)
[2] 贾敬贤, 贾定贤, 任庆棉. 中国作物及其野生近缘植物. 北京: 中国农业出版社, 2006: 40-85.
JIA J X, JIA D X, REN Q M. Chinese Crops and Their Wild Relatives. Beijing: China Agriculture Press, 2006: 40-85.(in Chinese)
[3] 李育农. 苹果属植物种质资源研究. 北京: 中国农业出版社, 2001: 20-72.
LI Y N. Researches of Germplasm Resources of Malus Mill. Beijing: China Agricultural Press, 2001: 20-72. (in Chinese)
[4] BYRNE M, MACDONALD B. Phylogeography and conservation of three oil mallee taxa,Eucalyptus kochii ssp. kochii, ssp.plenissima and E. horistes. Australian Journal of Botany, 2000,48(3):305-312.
[5] 陈国庆, 黄红文, 葛学军. 濒危植物矮沙冬青的等位酶多样性及居群分化. 武汉植物学研究, 2005,23(2):131-137.
CHEN G Q, HUANG H W, GE X J. Allozyme diversity and population differentiation in an endangered plant,Ammopiptanthus nanus(Leguminosae). Journal of Wuhan Botanical Research, 2005,23(2):131-137. (in Chinese)
[6] 潘丽芹, 季华, 陈龙清. 荷叶铁线蕨自然居群的遗传多样性研究. 生物多样性, 2005,13(2):122-129.
PAN L Q, JI H, CHEN L Q. Genetic diversity of the natural populations ofAdiantum reniforme var. sinense. Biodiversity Science, 2005,13(2):122-129. (in Chinese)
[7] BELLUSCI F, PALERMO A M, PELLEGRINO G, MUSACCHIO A. Genetic diversity and spatial structure in the rare, endemic orophyte campanula pseudostenocodon Lac.(Apennines, Italy), as a infered from nuclear and plastid variation. Plant Biosystems, 2008,142(1):24-29.
[8] SHAH A, LI D Z, GAO L M, LI H T, MOLLER M. Genetic diversity within and among populations of the endangered species Taxus fauna(Taxaceae) from Pakistan and implications for its conservation. Biochemical Systematics and Ecology, 2008,36(3):183-193.
[9] 寇淑君, 霍阿红, 付国庆, 纪军建, 王瑶, 左振兴, 刘敏轩, 陆平. 利用荧光SSR分析中国糜子的遗传多样性和群体遗传结构. 中国农业科学, 2019,52(9):1475-1487.
KOU S J, HUO A H, FU G Q, JI J J, WANG Y, ZUO Z X, LIU M X, LU P. Genetic diversity and population structure of broomcorn millet in China based on fluorescently labeled SSR. Scientia Agricultura Sinica, 2019,52(9):1475-1487. (in Chinese)
[10] 张冰冰. 抗寒苹果、梨种质资源遗传多样性研究[D]. 长春: 吉林农业大学, 2008: 1-3.
ZHANG B B. Study on the genetic diversity of winterhardy apple and pear germplasm resources[D]. Changchun: Jinlin Agricultural University, 2008: 1-3. (in Chinese)
[11] 王涛, 祝军, 李光晨, 周爱琴, 张文. 苹果砧木亲缘关系AFLP分析. 中国农业科学, 2002,34(3):256-259.
WANG T, ZHU J, LI G C, ZHOU A Q, ZHANG W. AFLP analysis of genetic relationships in apple rootstocks. Scientia Agricultura Sinica, 2002,34(3):256-259. (in Chinese)
[12] ZHANG D P, CARBAJULCA D, OJEDA L. Microsatellite analysis of genetic diversity in sweet potato varieties from Latin America and the Pacific region: Its implications on the dispersal of the crop. Genetic Resources and Crop Evolution, 2004,51(2):115-120.
[13] 高源, 王昆, 王大江, 赵继荣, 张彩霞, 丛佩华, 刘立军, 李连文, 朴继成. 7个来源地区山荆子的遗传多样性与群体结构分析. 中国农业科学 2018,51(19):3766-3777.
GAO Y, WANG K, WANG D J, ZHAO J R, ZHANG C X, CONG P H, LIU L J, LI L W, PIAO J C. The genetic diversity and population structure analysis on Malus baccata(L.) Borkh from 7 Sources. Scientia Agricultura Sinica, 2018,51(19):3766-3777. (in Chinese)
[14] RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics. Genome Studies and Molecular Genetics, 2002,5:94-100.
[15] GUPTA P K, RUSTGI S, MIR R R. Array-based high-throughput DNA markers for crop improvement. Heredity, 2008,101:5-18.
doi: 10.1038/hdy.2008.35 pmid: 18461083
[16] CHAGNE D, GASIC K, CROWHURST R N, HAN Y P, BASSETT H C, BOWATTE D R, LAWRENCE T J, RIKKERINK E H A, GARDINER S E, KORBAN S S. Development of a set of SNP markers present in expressed genes of the apple. Genomics, 2008,92(5):353-358.
pmid: 18721872
[17] MICHELETTI D, TROGGIO M, ZHARKIKH A, COSTA F, MALNOY M, VELASCO R, SALVI S. Genetic diversity of the genusMalus and implications for linkage mapping with SNPs. Tree Genetics & Genomes, 2011,7:857-868.
doi: 10.1007/s11295-011-0380-8
[18] 常源升, 孙瑞, 陈东玫, 王忆, 杨凤秋, 赵永波, 张新忠, 韩振海. 苹果果形相关基因的主基因分析与QTL定位. 园艺学报, 2013,40(S):2578.
CHANG Y S, SUN R, CHEN D M, WANG Y, YANG F Q, ZHAO Y B, ZHANG X Z, HAN Z H. Major gene analysis and QTL mapping of apple fruit shape related genes. Acta Horticulturae Sinica, 2013,40(S):2578. (in Chinese)
[19] SUN R, CHANG Y S, YANG F Q, WANG Y, LI H, ZHAO Y B, CHEN D M, WU T, ZHANG X Z, HAN Z H. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics, 2015,16:747.
pmid: 26437648
[20] 孙瑞. 苹果高密度遗传连锁图谱构建与重要果实品质性状QTL定位[D]. 北京: 中国农业大学, 2015: 3-18.
SUN R. High-density genetic linkage map construction and QTL identification for important fruit quality traits in apple[D]. Beijing: China Agricultural University, 2015: 3-18. (in Chinese)
[21] 刘更森. 苹果SSR和SNP标记开发及在遗传图谱构建和品种鉴定中的应用[D]. 长沙: 湖南农业大学, 2018: 10-15.
LIU G S. Development of apple SSR and SNP markers and application in genetic map construction and cultivar identification[D]. Changsha: Hunan Agricultural University, 2018: 10-15. (in Chinese)
[22] VELASO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, DAL R A, GOREMYKIN V, et al. The genome of the domesticated apple(Malus × domestica Borkh.). Nature Genetics, 2010,4:833-839.
[23] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, GEEST H, BIANCO L, MICHELETTI D, VELASCO R, PIERRO E A, GOUZY J, REES D J G, GUERIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, WEG E, BUCHER E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017,49(7):1099-1106.
pmid: 28581499
[24] ZHANG L Y, JIANG H, HAN X L, LI J J, GAO Y, RICHARDS C M, ZHANG C X, TIAN Y, LIU G M, GUL H, WANG D J, TIAN Y, YANG C X, MENG M H, YUAN G P, KANG G D, WU Y L, WANG K, ZHANG H T, WANG D P, CONG P H. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communication, 2019. https://doi.org/ 10.1038/ s41467-019-09518-x..
[25] 周蓓蓓, 朱海军, 生静雅, 刘广勤. DNA分子标记在果树种质资源遗传多样性研究中的应用. 江西农业学报, 2011,23(9):47-50.
ZHOU B B, ZHU H J, SHENG J Y, LIU G Q. Application of DNA molecular markers in genetic diversity study of fruit tree germplasm resources. Acta Agriculturae Jiangxi, 2011,23(9):47-50. (in Chinese)
[26] 彭强, 叶生鑫, 黄龙, 张大双, 刘颖, 吴健强, 张玉珊, 朱速松. 运用SLAF-seq技术构建水稻高密度遗传图谱. 分子植物育种, 2016,14(8):2127-2132.
PENG Q, YE S X, HUANG L, ZHANG D S, LIU Y, WU J Q, ZHANG Y S, ZHU S S. Construction of a high-density genetic map in rice by using specific-length amplified fragment sequencing(SLAF- seq)technology. Molecular Plant Breeding, 2016,14(8):2127-2132. (in Chinese)
[27] 苏文瑾, 赵宁, 雷剑, 王连军, 柴沙沙, 杨新笋. 基于SLAF-seq 技术的甘薯SNP位点开发. 中国农业科学, 2016,49(1):27-47.
SU W J, ZHAO N, LEI J, WANG L J, CHAI S S, YANG X S. SNP sites developed by specific length amplification fragment sequencing(SLAF-seq)in sweetpotato. Scientia Agricultura Sinica, 2016,49(1):27-47. (in Chinese)
[28] 刘凯, 李开祥, 韦晓娟, 梁文汇, 王坤. 基于SLAF-seq技术的金花茶SNP 标记开发及遗传分析. 经济林研究, 2019,3(3):79-83.
LIU K, LI K X, WEI X J, LIANG W H, WANG K. Development and genetic analysis on SNP sites from Camellia nitidssima based on SLAF-seq technology. Non-wood Forest Research, 2019,3(3):79-83. (in Chinese)
[29] 张恒, 刘众杰, 樊秀彩, 张川, 崔力文, 刘崇怀, 房经贵. 葡萄果粒形状简化基因组关联分析. 园艺学报, 2017,44(10):1959-1968.
ZHANG H, LIU Z J, FAN X C, ZHANG C, CUI L W, LIU C H, FANG J G. Genome-wide association mapping of berry shape traits via the reduced representation sequencing in grape. Acta Horticulturae Sinica, 2017,44(10):1959-1968. (in Chinese)
[30] 陶红霞. 基于SLAF标记的苹果遗传连锁图谱构建[D]. 杨凌: 西北农林科技大学, 2015: 9-12.
TAO H X. The genetic linkage map construction of apple based on SLAF marker [D]. Yangling: Northwest A & F University, 2015: 9-12. (in Chinese)
[31] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25(14):1754-1760.
pmid: 19451168
[32] MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTAKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010,20(9):1297-1303.
pmid: 20644199
[33] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, DURBIN R. 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map(SAM)format and SAMtools. Bioinformatics, 2009,25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[34] SUNSERI F, LUPINI A, MAUCERI A, DE LORENZIS G, ARANITI F, BRANCADORO L, MERCATI F. Single nucleotide polymorphism profiles reveal an admixture genetic structure of grapevine germplasm from Calabria, Italy, uncovering its key role for the diversification of cultivars in the Mediterranean Basin. Australian Journal of Grape and Wine Research, 2018,24(3):345-359.
[35] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874.
[36] SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987,4(4):406-425.
pmid: 3447015
[37] ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 2009,19(9):1655-1664.
pmid: 19648217
[38] 邹喻苹, 葛颂. 新一代分子标记-SNPs及其应用. 生物多样性, 2003,11(5):370-382.
ZOU Y P, GE S. A novel molecular marker-SNPs and its application. Biodiversity Science, 2003,11(5):370-382. (in Chinese)
[39] WANG D G, FAN J B, SIAO C J, BERNO A, YOUNG P, SAPOLSKY R, GHANDOUR G, PERKINS N, WINCHESTER E, SPENCER J, KRUGLYAK L, STEIN L, HSIE L, TOPALOGLOU T, HUBBELL E, ROBINSON E, MITTMANN M, MORRIS M S, SHEN N P, KILBURN D, RIOUX J, NUSBAUM C, ROZEN S, HUDSON T J, LIPSHUTZ R, CHEE M, LANDER E S. Large-Scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998,280(5366):1077-1082.
pmid: 9582121
[40] SYYNEN A C. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2001,2:930-942.
pmid: 11733746
[41] WILTSHIRE T, PLETCHER W T, BATALOV S, BARNES S W, TARANTINO L M, COOKE M P, WU H, SMYLIE K, SANTROSYAN A, COPELAND N G, JENKINS N A, KALUSH F, MURAL R J, GLYNNE R J, KAY S A, ADAMS M D, FLETCHER C F. Genome- wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proceeding of the National Academy of Sciences, 2003,100(6):3380-3385.
doi: 10.1073/pnas.0130101100
[42] JANDER G, NORRIS S R, ROUNSLEY S D, BUSH D F, LEVIN I M, LAST R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiology, 2002,129:440-450.
pmid: 12068090
[43] FELTUIS F A, WAN J, SCHULZE S R, ESTILL J C, JIANG N, PATERSONET A H. An SNP resources for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Research, 2004,14(9):1812-1819.
doi: 10.1101/gr.2479404 pmid: 15342564
[44] SOMERS D J, KIRKPATRICK R, MONIWA M, WALSH A. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome, 2003,46(3):431-437.
doi: 10.1139/g03-027 pmid: 12834059
[45] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-634.
doi: 10.3864/j.issn.0578-1752.2018.04.003
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Scientia Agricultura Sinica, 2018,51(4):626-634. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.04.003
[46] 陈士强, 秦树文, 黄泽峰, 戴毅, 张璐璐, 高营营, 陈建民. 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记. 作物学报, 2013,39(4):727-734.
doi: 10.3724/SP.J.1006.2013.00727
CHEN S Q, QIN S W, HUANG Z F, DAI Y, ZHANG L L, GAO Y Y, CHEN J M. Development of specific molecular markers forThinopyrum elongatum chromosome using SLAF-seq technique. Acta Agronomica Sinica, 2013,39(4):727-734. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00727
[47] CHEN W, YAO J, CHU L, LI Y, GUO X M, ZHANG Y S. The development of specific SNP markers for chromosome 14 in cotton using next-generation sequencing. Plant Breeding, 2014,133(2):256-261.
doi: 10.1111/pbr.12144
[48] ZHU Y F, YIN Y F, YANG K Q, LI J H, SANG Y L, HUANG L, FAN S. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose in walnut (Juglans regia L.). BMC Genomics, 2015,16(1):1-13.
doi: 10.1186/1471-2164-16-1
[49] HAN Y P, ZHAO X, LIU D Y, LI Y H, LIGHTFOOT D A, YANG Z J, ZHAO L, ZHOU G, WANG Z K, HUANG L, ZHANG Z W, QIU L J, ZHENG H K, LI W B. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytologist, 2016,209:871-884.
doi: 10.1111/nph.13626 pmid: 26479264
[50] 李贝贝, 张恒, 姜建福, 张颖, 樊秀彩, 房经贵, 刘崇怀. 基于SLAF-seq技术的葡萄种质遗传多样性分析. 园艺学报, 2019,46(11):2109-2118.
LI B B, ZHANG H, JIANG J F, ZHANG Y, FAN X C, FANG J G, LIU C H. Analysis of genetic diversity of grape germplasms using SLAF-seq technology. Acta Horticulturae Sinica, 2019,46(11):2109-2118. (in Chinese)
[51] DUAN N B, BAI Y, SUN H H, WANG N, MA Y M, LI M J, WANG X, JIAO C, LEGALL N, MAO L Y, WAN S B, WANG K, HE T M, FENG S Q, ZHANG Z Y, MAO Z Q, SHEN X, CHEN X L, JIANG Y M, WU S J, YIN C M, GE S F, YANG L, JIANG S H, XU H F, LIU J X, WANG D Y, QU C Z, WANG Y C, ZUO W F, XIANG L, LIU C, ZHANG D Y, GAO Y, XU Y M, XU K N, CHAO T, FAZIO G, SHU H R, ZHONG G Y, CHENG L L, FEI Z J, CHEN X S. Genome re-sequencing reveals the history of apple and supports a two-stage for fruit enlargement. Nature Communication, 2017,8:249.
doi: 10.1038/s41467-017-00336-7
[52] CAO K, ZHENG Z J, WANG L R, LIU X, ZHU G R, FANG W C, CHENG S F, ZENG P, CHEN C W, WANG X W, XIE M, ZHONG X, WANG X L, ZHAO P, BIAN C, ZHU Y L, ZHANG J H, MA G S, CHEN C X, LI Y J, HAO F G, LI Y, HUANG G D, LI Y X, LI H Y, XU X, WANG J. Comparative population genomics reveals the domestication history of the peach,Prunus persica, and human influences on perennial fruit crops. Genome Biology, 2014,15:415.
doi: 10.1186/s13059-014-0415-1 pmid: 25079967
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[6] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[7] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[8] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[9] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[10] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[11] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[12] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[13] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[14] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[15] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!