Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (5): 991-998.doi: 10.3864/j.issn.0578-1752.2018.05.016

• RESEARCH NOTES • Previous Articles     Next Articles

Enhancement of the Genetic Linkage Map Density of Tetraploid Based on SSR Markers

TANG Lu, JIN MengYa, HUANG LinKai, ZHANG Xu, ZHAO XinXin, ZHANG XinQuan   

  1. Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130
  • Received:2017-09-26 Online:2018-03-01 Published:2018-03-01

Abstract: 【Objective】In order to obtain a high density genetic map of tetraploid orchardgrass previously established, we used EST-SSR and genomics-SSR markers to enhance the density of the genetic map. These results will be beneficial and helpful to orchardgrass selection and QTL analysis,especially QTL analysis of recessive genes.【Method】Based on the proposed test-hybridization strategy, an F1 population of 214 individuals derived from the cross between two Chinese orchardgrass cultivars–Kaimo (tall height plant, more tillers, broad leaves and early-maturing) and 01436 (dwarf, less tillers, narrower leaves and late-maturing) was used for map construction. 574 pairs of EST-SSR markers and 150 pairs of Genomic-SSR markers were selected as the screening primers. Five of the 214 progenies were randomly selected and amplified together with their parents. Amplified fragments were separated on 8% denatured polyacrylamide gels. The primers which could amplify clear bands and the presence of separated polymorphic were used for population and parental DNA amplification. The amplified results were statistically analyzed according to the marker type. According to the presence or absence of bands (with band count 1, or count 0), the amplification products of the DNA were statistically analyzed. According to theχ2 test, the marker which separation ratio was in accordance with 1﹕1 (Aaaa × aaaa or aaaa × Aaaa) and 3﹕1 (Aaaa × Aaaa) for genetic linkage map construction by using HighMap software.【Result】Finally, 31 pairs of EST-SSR primers and 17 pairs of Genomic-SSR primers were used for population and parental DNA amplification, The primer polymorphism percentage were 5.4%, 11.3% and 6.6%.A total of 169 clear bands were obtained, and 89 were used to construct the genetic linkage map of orchardgrass. There were 79 markers with Aaaa × aaaa or aaaa × Aaaa segregation types, 10 with Aaaa × Aaaa and the remaining 80 with distorted markers. A high-density linkage map of orchardgrass was constructed using 2,551 markers, which were distributed on seven linkage groups spanning 758.4 cM. The encrypted map including 4187 SNP markers, 84 SSR markers, the number of markers in the LGs from166 to709, with average 364. LG1 contains the largest maker with 709, while the LG7 was the least with 166. The sizes of the individual LGs ranged from 60.28 to 147.09 cM, with average inter-marker distances ranging 0.19—0.76 cM. The average distance between adjacent distance markers was reduced from 0.37 cM to 0.3 cM. Due to the change of marker density, the position of the markers distribution on each linkage group also changed greatly.  【Conclusion】 A high-density genetic linkage map of tetraploid Dactylis glomerata was reconstructed using 2551 markers, which were distributed on seven linkage groups spanning 758.4 cM. The new map added a number of SSR markers, which total length increased by 42.63 cM and average distance between adjacent distance markers was reduced from 0.37 cM to 0.3 cM.

Key words: orchardgrass, SSR, genetic linkage map

[1]    董宽虎, 沈益新. 饲草生产学. 北京: 中国农业出版社, 2003: 113-117.
DONG K H, SHEN Y X. Forage Production. Beijing: China Agriculture Press, 2003: 113-117. (in Chinese)
[2]    谢文刚, 张新全, 马啸, 彭燕, 黄琳凯. 鸭茅种质遗传变异及亲缘关系的SSR分析. 遗传, 2009, 31(6): 654-662.
XIE W G, ZHANG X Q, MA X, PENG Y, HUANG L K. Genetic variation and relationship in orchardgrass (Dactylis glomerata L.) germplasm detected by SSR markers. Hereditas, 2009, 31(6):654-662. (in Chinese)
[3]    JAFAR A, NASERI H. Genetic variation and correlation among yield and quality traits in cocksfoot. Journal of Agricultural science, 2007, 145: 599-610.
[4]    WANG G Z, ZUO F Y, ZENG B, TANG X F. Comparison on seed production of various orchardgrass. Animal and feed science, 2011(4): 34-38.
[5]    VAN SANTEN E, SLEPER D A. Orchardgrass in Cool-season forage grasses. America. American Society of Agronomy-Crop Science Society of America-Soil Science Society of America. 1996: 503-534.
[6]    张新全. 优质牧草鸭茅种质资源发掘及创新利用研究. 北京: 科学出版社, 2015.
ZHANG X Q. Exploration, innovation and utilization of Orchardgrass Germplasm. Beijing: science press, 2015. (in Chinese)
[7]    BUSHMAN B S, LARSON S R, TUNA M, WEST M S, HERNANDEZ A G, VULLAGANTI D, GONG G, ROBINS J G, JENSEN K B, THIMMAPURAM J. Orchardgrass (Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability. Theoretical and applied genetics, 2011, 123(1): 119-129.
[8]    SONG Y H, LIU F X, ZHU Z F, TAN L B, FU Y C, SUN C Q, CAI H W. Construction of a simple sequence repeat marker-based genetic linkage map in the autotetraploid forage grass Dactylis glomerata L. Grassland Science, 2011,57(57):158-167.
[9]    XIE W G, ZHANG B Y, ZHANG X Q, LIU W, CHEN Y X, ZHOU H. Identification and genetic analysis of orchardgrass (Dactylis glomerata L.) hybrids by SRAP molecular markers. Scientia Agricultura Sinica,2010, 43(16): 3288-3295.
[10]   XIE W G, ZHANG X Q, CAI H, HUANG L K, PENG Y, MA X. Genetic maps of SSR and SRAP markers in diploid orchardgrass (Dactylis glomerata L.) using the pseudo-testcross strategy. Genome, 2011, 54(3): 212-221.
[11]   ZHAO X X, HUANG L K, ZHANG X Q, WANG J P, YAN D F, LI J, TANG L, LI X L, SHI T W. Construction of high-density genetic linkage map and identification of flowering-time QTLs in orchardgrass using SSRs and SLAF-seq. Scientific Reports, 2016, 6: 29345.
[12]   WANG Y, GEORGI L L, ZHEBENTYAYEVA T N, REIGHARD G L, SCORZA R, ABBOTT A G. High-throughput targeted SSR marker development in peach (Prunus persica). Genome, 2002, 45(2): 319-328.
[13]   JIANG L F , ZHANG X Q, MA X , HUANG L K, XIE W G, MA Y M, ZHAO Y F. Identification of orchardgrass (Dactylis glomerata L.)cultivars by using simple sequence repeat markers. Genetics & Molecular Research, 2013, 12(12): 5111-5123.
[14]   XIE W, ZHANG X, PENG Y. Genetic variation and phylogenetic relationships of orchardgrass(Dactylis glomerata L.) as revealed by SSR markers. New Paradigm for Diversity of Forage Production in the East Asian, 2009, 8: 122-123.
[15]   YAN H, ZHANG Y, ZENG B, YIN G, ZHANG X, JI Y, HUANG L, JIANG X, LIU X, PENG Y, MA X, YAN Y. Genetic diversity and association of EST-SSR and SCoT markers with rust traits in orchardgrass (Dactylis glomerata L.). Molecules, 2016, 21(1):66.
[16]   张利达, 唐克轩. 植物EST-SSR标记开发及其应用. 基因组学与应用生物学, 2010, 29(3): 534-541.
ZHANG L D, TANG K X. Development of plant EST-SSR markers and its application. Genomics and Applied Biology, 2010, 29(3): 534-541. (in Chinese)
[17]   杨海健, 伊华林. HB柚有性后代的杂种鉴定和遗传多样性分析. 华中农业大学学报, 2012(5): 574-577.
YANG H J, YI H L. Identification and genetic diversity analysis of hybrid progenies from HB pummelo. Journal of Huazhong Agricultural University, 2012(5): 574-577. (in Chinese)
[18]   Chen C, Sleper D A, Johal G S. Comparative RFLP mapping of meadow and tall fescue. Theoretical & Applied Genetics, 1998, 97(1/2): 255-260.
[19]   Huang L K, YAN H D, ZHAO X X, ZHANG X Q, WANG J, FRAZIER T, YIN G, HUANG X, YAN D F, ZANG W J, MA X, PENG Y, YAN Y H, LIU W. Identifying differentially expressed genes under heat stress and developing molecular markers in orchardgrass (Dactylis glomerata L.) through transcriptome analysis. Molecular Ecology Resources, 2015, 15 (6): 1497.
[20]   李季, 黄琳凯, 金梦雅, 冯光燕, 赵欣欣, 聂刚, 潘玲, 唐露, 张新全. 鸭茅基因组Genomic-SSR标记开发. 分子植物育种, 2017, 15(10):1-11.
LI J, HUANG L K, JIN M Y, FENG G Y, ZHAO X X, NIE G, PANG L, TANG L, ZHANG X Q. Development and verification of orchardgrass Genomic-SSR. Molecular Plant Breeding, 2017, 15(10):1-11. (in Chinese)
[21]   Vision T J, Brown D G, Shmoys D B, DURRETT R T, TANKSLKY S D. Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics, 2000,155(1): 407.
[22]   LIU D Y, MA C X, HONG W G, HUANG L, LIU M, ZENG H P, DENG D J, XIN H G, SONG J, XU C H, SUN X W, HOU X L, WANG X W, ZHENG H K. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE, 2014, 9(6):e98855.
[23]   HUMPHREYS M W, YADAV R S, CAIRNS A J, TURNER L B, HUMPHREYS J, SKøT L. A changing climate for grassland research. New Phytologist, 2006, 169: 9-26.
[24]   谢文刚, 刘文献, 张建全, 王彦荣. 牧草分子遗传连锁图谱及其应用. 草业科学, 2014, 31(6): 1147-1159.
XIE W G, LIU W X, Zhang J Q, WANG Y R. Molecular genetic linkage map and its application in forage crops. Pratacultural Science, 2014, 31(6): 1147-1159. (in Chinese)
[25]   JIANG Z Y, YU X X, YU Z, LIU Z H, HAO Z M, LI X L. Construction of an AFLP-based genetic linkage map of tetraploid hybrid wheatgrass. Journal of Triticeae Crops, 2015, 35(4): 457-463.
[26]   GUAN X L, HIRATA M, DING C, XU N, YUYAMA N,TAN L B, FU Y C, WANG J P, CAI H W. Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum × Lolium temulentum L. × L. temulentum. Grassland Science, 2015, 60(3): 142-149.
[27]   KING J, THOMAS A, JAMES C, KING I, ARMSTEAD I. A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum, and Festuca pratensis. BMC Genomics, 2013, 14(1): 1-7.
[28]   LU J, LU Y Y, LI J Q, ZHAN Q W, WANG M. SSR primer designing and construction of a genetic map of Sorghum bicolor×S. sudanense. Chinese Journal of Grassland, 2009, 31(2): 28-33.
[29]   MORGANTE M, HANAFEY M, POWELL W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 2002, 30: 194-200.
[30]   WANG Z, WEBER J L, ZHONG G, TANKSLEY S D. Survey of plant short tandem DNA repeats. Theoretical & Applied Genetics, 1994, 88(1): 1-6.
[31]   姜春芽, 廖娇, 徐小彪, 辜青青, 刘善军, 陈金印. 植物EST-SSR技术及其应用. 分子植物育种, 2009(1): 125-129.
JIANG C Y, LIAO J, XU X B, WEI Q Q, LIU S J, CHEN J Y. Plant EST-SSR technology and its application. Molecular Plant Breeding, 2009(1): 125-129. (in Chinese)
[32]   WEN M F, WANG H Y, XIA Z Q, ZOU M L, LU C, WANG W Q. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Research Notes, 2010, 3(1): 42.
[33]   张亚东, 彭婵, 李振芳, 杨彦伶, 胡兴宜. 基因组SSR与EST-SSR标记在杨树不同种间的遗传差异. 东北林业大学学报, 2011, 39(12): 8-11.
ZHANG Y D, PENG C, Li Z F, YANG Y L, HU X Y. Genetic diversity of genomic-SSR and EST-SSR markers in interspecies of poplar. Journal of Northeast Forestry University, 2011, 39(12): 8-11. (in Chinese)
[34]   刘德新. 陆地棉遗传图谱加密与T_1区域纤维品质QTL精细定位及候选基因鉴定[D]. 重庆: 西南大学, 2015.
Liu D X. Maker density increase of genetic map and fine mapping and candidate identification of a major QTL controlling fiber quality traits at T1 region[D]. Chongqing: Southwest university. (in Chinese)
[1] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[2] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[3] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[7] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[8] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[9] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[10] Xue CHEN,Rui WANG,FuYu JING,ShengSen ZHANG,LeDong JIA,MouZheng DUAN,Yu WU. Location and Linkage Markers for Candidate Interval of the White Petal Gene in Brassica napus L. by Next Generation Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(6): 1108-1117.
[11] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[12] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[13] KOU ShuJun, HUO AHong, FU GuoQing, JI JunJian, WANG Yao, ZUO ZhenXing, LIU MinXuan, LU Ping. Genetic Diversity and Population Structure of Broomcorn Millet in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2019, 52(9): 1475-1477.
[14] CHANG JiaYing,LIU ShuSen,MA HongXia,SHI Jie,GUO Ning,ZHANG HaiJian. Genetic Diversity Analysis of Curvularia lunata in Summer Maize in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2019, 52(5): 822-836.
[15] WU BingChao, TONG Lei, DU ZhaoChang, HU JiaLing, ZHANG Huan, CHEN Yi, LIU Wei, ZHANG XinQuan, HUANG LinKai. Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages [J]. Scientia Agricultura Sinica, 2019, 52(3): 414-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!