Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 414-427.doi: 10.3864/j.issn.0578-1752.2019.03.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mutagenic Effects of 60Co-γ-rays on Two Species of Pennisetum Genus Forages

WU BingChao,TONG Lei,DU ZhaoChang,HU JiaLing,ZHANG Huan,CHEN Yi,LIU Wei,ZHANG XinQuan,HUANG LinKai()   

  1. Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130
  • Received:2018-10-31 Accepted:2018-11-22 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 Exploring the mutagenic effects of 60Co-γ-rays on P. purpureum × P. americanurn. cv. Reyan No.4 and P. purpureum Schum. cv. Huanan and creating new germplasm, which aims to promote the process of Pennisetum breeding. 【Method】 Based on the pre-dose screening, using stems of the two species of Pennisetum as materials and irradiated by 60Co-γ-rays and the dose was 30 Gy, the dose rate was 1 Gy·min -1. Then, the irradiated stems were planted in the field and conventional field cultivation management was performed. The survivor rate was counted one month later. After the plants to be survived mature, we randomly selected 30 individual plants from the two species Pennisetum and 7 morphological indicators of them were measured. Then, molecular markers were used to explore the effects of radiation on genetic variation. 【Result】 30 individual plants of the two species Pennisetum were selected randomly to measure the morphological indicators, respectively. The heights of 28 mutants, internodes of 21 mutants and leaf breadth of 17 mutants of Reyan No.4 have significant differences at 0.05 or 0.01 levels with the control. The heights of 20 mutants of Huanan have significant differences at 0.05 or 0.01 levels with the control, but there were no significant differences in other morphological indicators with the control. Most of the two species of Pennisetum mutants showed a decrease in plant height, and the biomass also decreased. However, we found that a mutant RY4-17 whose biomass is more than control because it has more tillers. The results of SSR molecular markers indicated that the average PIC of the 20 primers was 0.245 in the Reyan No.4 mutants, and a total of 83 bands were obtained, of which 52 bands were polymorphic. The GS between the mutants and the control was 0.67-0.89, the average was 0.81, the number of different sites was 9-27, with an average of 15.9. The UPGMA cluster showed that the distance between RY4-9, RY4-23 and control was the longest and indicated the mutation degree was greatest. In the Huanan mutants, the average PIC of the 20 primers was 0.394, a total of 81 bands were obtained, of which 65 bands were polymorphic. And the GS between the mutants and the control was 0.54-0.86, the average was 0.77, the number of different sites was 10-38, with an average of 18.8. The UPGMA cluster showed that the distance between HN-24 and control was the longest and indicated the mutation degree was greatest. 【Conclusion】 The appropriate dose of 60Co-γ-rays radiation can significantly reduce the survival rate of the two species Pennisetum, and can effectively induce the mutations in the morphological and genetic. The method is an effective way to solve the lack of genetic resources caused by asexual reproduction of Pennisetum.

Key words: Pennisetum, 60Co-γ-rays, phenotypic variation, genetic variation, SSR molecular markers

Table 1

The mutants’ morphological indicators of P. purpureum × P. americanurn. cv. ReyanNo.4"

材料
Material
分蘖数
Tiller
株高
Plant height (cm)
茎节数
Internode
茎粗
Stem thick (mm)
叶长
Leaf length (cm)
叶宽
Leaf breadth (mm)
生物量
Yield (kg)
RY4-1 18 469.1±11.3 18.7±4.0 21.8±4.2 123.5±13.0 55.9±4.2** 19.1
RY4-2 24 382.4±15.7** 16.8±3.3 16.4±2.9* 114.2±11.9 56.5±4.0** 13.4
RY4-3 21 444.9±21.2** 14.4±5.1** 20.4±2.3 120.5±6.3 55.7±6.7** 15.3
RY4-4 14 256.2±18.0** 6.3±3.5** 15.2±2.3** 96.9±10.7** 53.0±1.0 2.3
RY4-5 24 385.7±11.5** 14.3±4.1** 18.0±2.0 121.8±13.4 50.1±4.3 10.7
RY4-6 15 375.9±23.3** 14.3±5.2** 20.3±1.9 127.8±8.8 56.5±5.8** 10.8
RY4-7 28 415.9±18.3** 18.2±1.9 18.5±3.5 120.9±16.7 56.1±2.2** 18.3
RY4-8 22 360.6±22.0** 15.8±1.6 20.2±4.3 123.1±13.8 58.8±3.2** 18.9
RY4-9 17 337.4±27.2** 9.5±5.0** 18.7±2.2 105.9±19.1 61.1±4.7** 7.1
RY4-10 19 304.7±21.3** 11.0±3.6** 17.0±1.9 106.1±16.3 51.1±3.8 13.0
RY4-11 19 444.5±30.0** 13.7±6.6** 18.3±1.9 119.3±12.8 54.5±7.0** 17.1
RY4-12 18 414.4±31.0** 15.2±5.3* 16.4±1.7* 102.1±31.6* 52.2±5.7* 8.8
RY4-13 8 370.1±18.5** 13.3±6.6** 17.2±2.9 126.2±12.3 53.4±4.0* 9.9
RY4-14 13 359.2±10.8** 13.2±2.8** 17.1±3.7 106.6±6.1 40.2±2.7* 12.0
RY4-15 26 393.7±16.1** 14.3±4.3** 20.1±2.1 126.7±39.9 52.9±5.8* 16.9
RY4-16 14 362.3±22.4** 12.6±4.0** 17.2±2.7 91.8±7.3** 55.8±4.8** 4.8
RY4-17 31 441.9±11.3** 13.0±5.1** 19.0±3.5 115.4±8.4 40.5±6.2** 19.9
RY4-18 12 214.8±30.4** 7.6±5.9** 15.2±3.9** 94.5±23.5** 48.3±6.0 2.3
RY4-19 17 417.2±10.4** 15.2±3.2* 21.3±3.4 121.0±7.1 54.8±6.1** 15.3
RY4-20 15 299.9±9.6** 9.2±3.1** 15.2±2.3** 116.5±14.6 48.7±7.2 5.2
RY4-21 21 376.5±16.7** 14.1±5.8** 19.9±3.6 132.4±4.1 51.8±2.5 9.6
RY4-22 20 349.6±12.2** 10.7±3.3** 17.4±3.5 111.3±12.6 56.3±3.9** 8.6
RY4-23 21 383.8±10.6** 12.4±0.5** 19.3±0.6 121.8±9.1 50.2±5.0 19.0
RY4-24 17 374.2±22.8** 15.4±2.3 17.8±1.7 120.0±5.8 48.2±6.2 14.0
RY4-25 3 352.0±32.5** 14.7±2.5 13.5±1.5** 105.3±17.2 46.0±8.5 1.2
RY4-26 13 352.1±50.6** 12.0±4.5** 16.6±1.5* 108.3±18.0 43.9±6.6 4.1
RY4-27 11 411.1±52.3** 18.4±6.3 18.8±3.7 119.6±8.0 48.7±9.2 7.6
RY4-28 22 471.9±33.5 18.5±3.7 18.5±1.4 127.6±10.6 55.9±2.8** 18.0
RY4-29 10 400.3±41.6** 17.8±2.2 15.1±1.9** 131.6±17.2 49.6±5.4 17.8
RY4-30 19 422.4±43.8** 15.0±5.0* 15.2±2.6** 123.3±11.3 42.9±4.5 12.4
CK 19.7±1.5 476.3±42.8 20.1±4.0 19.5±2.3 120.0±23.4 47.4±4.1 17.4±0.7

Table 2

The mutants’ morphological indicators of P. purpureum Schum. cv. Huanan"

材料
Material
分蘖数
Tiller
株高
Plant height (cm)
茎节数
Internode
茎粗
Stem thick (mm)
叶长
Leaf length (cm)
叶宽
Leaf breadth (mm)
生物量
Yield (kg)
HN-1 29 435.5±16.1 20.6±2.9* 17.7±2.4 88.6±6.4 42.0±6.3* 18.4
HN-2 18 399.5±34.8** 11.4±5.5 19.0±2.4 92.4±14.3 47.0±4.4 13.7
HN-3 23 386.2±45.2** 16.1±7.1 15.9±1.8 81.0±5.6* 45.5±5.0 13
HN-4 36 422.1±12.0** 15.2±4.8 17.3±2.5 88.4±11.1 44.6±3.9 18.9
HN-5 19 426.9±17.8** 15.2±5.6 17.1±1.6 93.3±16.4 43.5±5.1 12.3
HN-6 18 408.4±15.1** 14.8±4.9 17.6±2.7 93.1±11.0 40.7±4.0** 10.8
HN-7 13 261.2±31.1** 12.7±2.8 11.6±1.6** 86.5±10.4 36.6±4.3** 3.2
HN-8 25 449.2±16.9 15.3±6.1 18.0±3.0 82.4±14.0* 45.4±4.2 15.8
HN-9 25 429.2±29.6* 14.8±5.0 16.4±2.0 101.4±9.6 44.0±5.1 14.1
HN-10 26 410.8±17.5** 17.5±5.1 16.2±2.0 95.0±12.6 40.6±4.1** 13.7
HN-11 14 421.8±29.0** 17.1±3.9 18.4±1.8 94.1±8.1 43.4±3.6 8.9
HN-12 43 469.6±15.9 18.3±5.2 18.1±2.2 106.8±13.1** 47.7±3.6 24.2
HN-13 43 493.0±25.9** 17.6±3.4 18.2±2.4 93.2±10.0 42.1±1.7 28.6
HN-14 26 489.6±17.2** 17.1±4.8 19.0±2.1 89.3±9.2 42.3±3.8* 14.5
HN-15 32 402.6±18.3** 19.7±4.5 18.6±2.2 82.9±12.5 52.6±4.0* 20.9
HN-16 22 340.5±32.1** 15.8±3.4 18.2±2.4 84.1±6.7 51.4±6.4 9.9
HN-17 21 428.6±12.5* 17.1±6.2 19.5±3.5* 88.0±28.4 45.2±5.1 10.8
HN-18 35 441.7±13.2 22.1±5.5** 16.6±4.2 78.8±6.1** 44.9±2.8 20.4
HN-19 23 432.3±12.7* 16.1±7.5 19.1±2.1 96.1±10.4 40.8±5.3** 10.6
HN-20 23 454.0±20.3 17.6±4.9 17.3±1.1 82.7±5.5 45.1±2.8 13.1
HN-21 19 366.7±34.4** 16.9±5.5 16.1±1.7 83.9±8.5 45.4±4.4 10.8
HN-22 13 376.6±17.6** 15.1±5.5 16.4±2.0 97.1±8.7 44.1±4.7 7.9
HN-23 47 471.0±15.7 16.8±1.3 19.7±4.3* 105.2±6.3* 43.9±4.2 22.6
HN-24 26 432.0±28.6 17.0±1.6 15.5±1.8 95.2±8.6 43.9±3.0 10
HN-25 21 409.3±25.9** 17.7±7.8 19.3±3.3* 87.0±13.2 42.3±5.7* 21.1
HN-26 25 461.3±18.6 15.5±7.2 19.4±3.1* 73.4±5.2** 52.6±5.6* 21.4
HN-27 17 318.6±27.5** 14.1±4.0 16.7±2.4 80.9±10.1* 46.2±4.8 9.4
HN-28 18 434.6±27.0 17.1±5.4 23.3±3.0** 83.4±12.1 62.0±14.9** 15.7
HN-29 19 387.9±19.3** 13.6±3.5 15.7±2.6 92.0±11.5 44.2±4.7 8.4
HN-30 36 451.2±12.7 18.1±5.6 20.8±2.3** 80.0±12.4* 40.4±5.3** 18.9
CK 26.3±2.1 454.5±21.9 15.2±7.0 17.0±2.7 92.7±7.9 47.8±2.8 18.8±0.9

Fig. 1

The amplification product electrophoresis of primer SSR43 M: Stands for marker; CK: Stands for the control material; 1-30: The mutants of Huanan"

Table 3

20 SSR primers and their amplification results of P. purpureum × P. americanurn. cv. ReyanNo.4"

引物名称 上游引物 下游引物 退火温度 扩增条带数 多态性条带数 多态性条带比率 多态性信息量
Primer name Forward primer Reverse primer Annealing Total number of amplified bands The number of polymorphic bands Percentage of polymorphic bands (%) PIC
(5′-3′) (5′-3′) (℃) (%)
SSR8 TCCCTCTAATCACAAATGAGTCCA TTTGGACTGTTTCCCTTTCAAATAA 62 3 3 100 28.5
SSR14 GAGAAGATCAGAGGAGGGTAGCAG CGATGAATGCAATGCAAGCTA 62 3 2 66.67 17.5
SSR16 ACTAGAACTACAGGAGGTCGGGG ATATGGGATGTGTTGAGGTGTGG 62 3 3 100 47.7
SSR19 CTCTCTTTCTCTCTCTGTTGCGTG CACCACACTGCTCCACCACT 62 6 6 100 29.9
SSR24 ACCACCATTCCTTCAATTCGTACT GAGAAGTGAGTGCTACAGGTGCAT 62 2 0 0 0
SSR33 AGGCTCAAGCTCTACGTGGC GACAAACGGCAAACATTTTCAA 58 6 6 100 18.6
SSR39 GACCTGGGGTAGGTCTGATCC CGCTTTGTTTTGGTGTAGATTGAG 62 7 6 85.71 43
SSR42 TTTAGAGAACTCCTACGGTACGGC ATCCACCTAGACACCGTACGAAAT 62 2 1 50 23.2
SSR43 GTTTCTTGCAAGTTACTCGCTTCA CGTTAGTTCCTCCATTCTCTTTTGA 62 3 3 100 75.5
SSR46 CGCAACCAGCATCTCTTCAG CACTGTCGTAGCTCAAGAAGTCGT 62 6 4 66.67 24
SSR47 CAATGAAACTATGCACTTAAGCCG AGTCTGTTTTGAGTCGAGGGAATC 62 4 2 50 18.4
SSR50 GCATCAGGAACCATATATGTTGGA AACACAATCGCTAGCTGATCCATA 62 5 2 40 21.9
SSR51 GTTTGCTTCAACATAACGCAAAAG GATCTGGTGGCTCCTGACTTG 58 3 1 33.33 18
SSR52 AAAGAGCAAAGGCTTTATTTGCAC CGACACAGAGGGAGTGTTATATTTTG 62 4 1 25 50.8
SSR53 AAATGAAAGTGAAAGGGGAAAACA TTTTTCTTCTGTTATTATTCTCGTGTCC 62 3 0 0 0
SSR54 GAAAACTCACCGGAAGGTCAAC GAGGAGAAGACGAACGGTGACT 62 4 3 75 9.3
SSR55 AAGTCCACATCATCCCGGTC GTGGCTTACCTGATCCGAGC 62 8 2 25 7.9
SSR59 CTCTAATCTCTCTCCTCCCGCTC CTGCTCACCATCAGCAGTGAG 60 5 3 60 26.7
SSR65 GCCTGCCTATTGCCTAGACG AAGGAAGATGTGACTCACGGATTT 62 3 3 100 29.2
SSR70 AGCTGATCTTATTTGGCTACTGCC TGTAAAAGCCTACAAGGATGCGTA 62 3 0 0 0
总计Total 83 52
平均Average 4.2 2.6 24.5

Table 4

20 SSR primers and their amplification results of P. purpureum Schum. cv. Huanan"

引物名称 上游引物 下游引物 退火温度 扩增条带数 多态性条带数 多态性条带比率 多态性信息量
Primer name Forward primer Reverse primer Annealing Total number of amplified bands The number of polymorphic bands Percentage of polymorphic bands (%) PIC
(5′-3′) (5′-3′) (℃) (%)
SSR1 AGCATCGATAGCTTTTTCCTGC GAGGGGAGGAGAGGATGCTT 62 4 3 75 58
SSR3 GTCGCACTGCAATCCAACATA TCCATTCATTCATTCTTCAGTGATTT 62 3 3 100 55.3
SSR9 CGTACCTTCTCGCAATAAGGAGAT GAAGAAGGTTCACCTCTTTCGGTA 62 3 2 66.67 47.7
SSR11 AGAGGAGACAAAGGACCTCCG GTCCATGGAGGACGAGCTTC 62 8 7 87.5 28.6
SSR12 GTCGAGGAAGTCCTTGGTGTG GACGAGGGGTTCATCCACAT 62 4 4 100 58.5
SSR19 CTCTCTTTCTCTCTCTGTTGCGTG CACCACACTGCTCCACCACT 62 6 2 33.33 13.3
SSR23 AGGTTCTGCTTCTGGAGGTGAC TAGATTTGTTCATGATGATGCGTG 62 3 2 66.67 56.1
SSR24 ACCACCATTCCTTCAATTCGTACT GAGAAGTGAGTGCTACAGGTGCAT 62 4 2 50 18.7
SSR25 ATTTCTCTGGTTTTGTTCAGCTCC ACAGAGGTGGTATGATCGACTTGA 62 4 4 100 68.5
SSR29 GCTTTCAAGTGATACAACGACACC CCACTCGTCCTTCAATCTCTACCT 62 4 3 75 10.8
SSR35 ATGTGTTCGTTGCCATCTGTAGTT GCACGGCAAACAAACAAAAA 62 2 2 100 65.9
SSR38 TCTTTAGATCTCTGCCATGTAGCG GCTAGCACTACCCCTGCATTTTAT 62 3 1 33.33 18
SSR43 GTTTCTTGCAAGTTACTCGCTTCA CGTTAGTTCCTCCATTCTCTTTTGA 62 7 7 100 49.1
SSR47 CAATGAAACTATGCACTTAAGCCG AGTCTGTTTTGAGTCGAGGGAATC 62 5 5 100 61.5
SSR50 GCATCAGGAACCATATATGTTGGA AACACAATCGCTAGCTGATCCATA 62 4 3 75 35.3
SSR53 AAATGAAAGTGAAAGGGGAAAACA TTTTTCTTCTGTTATTATTCTCGTGTCC 62 2 2 100 76.5
SSR54 GAAAACTCACCGGAAGGTCAAC GAGGAGAAGACGAACGGTGACT 62 4 3 75 27.4
SSR55 AAGTCCACATCATCCCGGTC GTGGCTTACCTGATCCGAGC 62 4 4 100 27
SSR59 CTCTAATCTCTCTCCTCCCGCTC CTGCTCACCATCAGCAGTGAG 60 4 4 100 7.8
SSR66 ATAATGGAAAGTGAGTTTTGCCGT GGAGCCTTCAGCTTTAAAAGACAA 62 3 2 66.67 4.2
总计Total 81 65
平均Average 4.1 3.3 39.4

Table 5

The genetic similarity coefficient between mutants and control materials"

诱变系名称
Mutants
遗传相似系数
GSC
诱变系名称
Mutants
遗传相似系数
GSC
诱变系名称
Mutants
遗传相似系数
GSC
RY4-1 0.81 RY4-21 0.77 HN-11 0.65
RY4-2 0.83 RY4-22 0.78 HN-12 0.77
RY4-3 0.77 RY4-23 0.72 HN-13 0.79
RY4-4 0.87 RY4-24 0.81 HN-14 0.69
RY4-5 0.80 RY4-25 0.76 HN-15 0.74
RY4-6 0.87 RY4-26 0.88 HN-16 0.72
RY4-7 0.78 RY4-27 0.84 HN-17 0.78
RY4-8 0.84 RY4-28 0.83 HN-18 0.81
RY4-9 0.67 RY4-29 0.86 HN-19 0.80
RY4-10 0.83 RY4-30 0.88 HN-20 0.83
RY4-11 0.77 HN-1 0.79 HN-21 0.83
RY4-12 0.80 HN-2 0.78 HN-22 0.80
RY4-13 0.82 HN-3 0.72 HN-23 0.75
RY4-14 0.81 HN-4 0.78 HN-24 0.54
RY4-15 0.86 HN-5 0.74 HN-25 0.85
RY4-16 0.77 HN-6 0.75 HN-26 0.83
RY4-17 0.72 HN-7 0.77 HN-27 0.86
RY4-18 0.76- HN-8 0.72 HN-28 0.80
RY4-19 0.83 HN-9 0.67 HN-29 0.84
RY4-20 0.89 HN-10 0.78 HN-30 0.85

Table 6

The difference of SSR markers sites between the control materials and its mutants"

诱变系名称
Mutants
差异位点数(个)
Different sites
差异位点百分率
Percentage of different sites (%)
诱变系名称
Mutants
差异位点数(个)
Different sites
差异位点百分率
Percentage of different sites (%)
RY4-1 16 19.3 HN-1 17 21.0
RY4-2 13 15.7 HN-2 18 22.2
RY4-3 19 22.9 HN-3 23 28.4
RY4-4 11 13.3 HN-4 18 22.2
RY4-5 17 20.5 HN-5 21 25.9
RY4-6 11 13.3 HN-6 20 24.7
RY4-7 18 21.7 HN-7 19 23.5
RY4-8 13 15.7 HN-8 23 28.4
RY4-9 27 32.5 HN-9 27 33.3
RY4-10 14 16.9 HN-10 18 22.2
RY4-11 19 22.9 HN-11 28 34.6
RY4-12 17 20.5 HN-12 19 23.5
RY4-13 15 18.1 HN-13 17 21.0
RY4-14 16 19.3 HN-14 24 29.6
RY4-15 12 14.5 HN-15 21 25.9
RY4-16 19 22.9 HN-16 23 28.4
RY4-17 23 27.7 HN-17 18 22.2
RY4-18 20 24.1 HN-18 15 18.5
RY4-19 14 16.9 HN-19 16 19.8
RY4-20 9 10.8 HN-20 14 17.3
RY4-21 19 22.9 HN-21 14 17.3
RY4-22 18 21.7 HN-22 16 19.8
RY4-23 23 27.7 HN-23 20 24.7
RY4-24 16 19.3 HN-24 38 46.9
RY4-25 20 24.1 HN-25 12 14.8
RY4-26 10 12.0 HN-26 14 17.3
RY4-27 13 15.7 HN-27 10 12.3
RY4-28 14 16.9 HN-28 16 19.8
RY4-29 12 14.5 HN-29 13 16.0
RY4-30 10 12.0 HN-30 12 14.8

Fig. 2

UPGMA clustering map of P. purpureum Schum. cv. ReyanNo.4 and Huanan mutants"

[1] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1990.
Reipublicae Popularis Sinicae. Flora. Beijing: Science Press, 1990. ( in Chinese)
[2] 郑安俭, 杨地龙, 叶晓青, 顾和平 . 杂交狼尾草高产栽培技术. 种子世界, 2003(3):31.
ZHENG A J, YANG D L, YE X Q , GU H P .High-yielding cultivation technique of hybrid Pennisetum. Seed World, 2003(3):31. (in Chinese)
[3] 刘国道, 白昌军, 王东劲, 易克贤, 韦家少, 何华玄, 周家锁 . 热研4号王草选育. 草地学报, 2002,10(2):92-96.
LIU G D, BAI C J, WANG D J, YI K X, WEI J S, HE H X, ZHOU J S . The selection and utilization of reyan No.4 king grass. Acta Agrestia Sinica, 2002,10(2):92-96. (in Chinese)
[4] 陆炳章, 许慰睽, 周春霖, 卞同洋 . 杂交狼尾草在盐渍土区生长特性及其应用. 中国草地学报, 1990(2):30-40.
LU B Z, XU W K, ZHOU C L, BIAN T Y . The growth characteristics and application ofPennisetum hybrid in saline soil area. Chinese Journal of Grassland, 1990(2):30-40. (in Chinese)
[5] 李茂, 字学娟, 侯冠彧, 周汉林 . 体外产气法评价5种热带禾本科牧草营养价值. 草地学报, 2013,21(5):1028-1032.
LI M, ZI X J, HOU G Y, ZHOU H L . Nutritional evaluation of five tropical gramineous forages. Acta Agrestia Sinica, 2013,21(5):1028-1032. (in Chinese)
[6] 荣辉, 徐安凯, 下条雅敬, 邵涛 . 初次刈割象草青贮发酵品质动态. 草地学报, 2009,17(4):537-539.
RONG H, XU A K , XIA T Y J, SHAO T . Changes in fermentation quality of napiergras harvested the first growth. Acta Agrestia Sinica, 2009,17(4):537-539. (in Chinese)
[7] JEWELL W J, CUMMINGS R J, RICHARDS B K . Methane fermentation of energy crops: maximum conversion kinetics and in situ biogas purification. Biomass & Bioenergy. 1993,5(3/4):261-278.
doi: 10.1016/0961-9534(93)90076-G
[8] STRICKER J A, SMITH D W . Economic Development Through Biomass Systems Integration in Central Florida . Golden, Colorado: National Renewable Energy Laboratory, 1995.
[9] WOODARD K R, PRINE G M, BACHREIN S . Solar energy recovery by elephantgrass, energycane, and elephantmillet canopies. Crop Science, 1993,33(4):824-830.
doi: 10.2135/cropsci1993.0011183X003300040039x
[10] SCHANK S C, CHYNOWETH D P, TURICK C E, MENDOZA P E . Napiergrass genotypes and plant parts for biomass energy. Biomass & Bioenergy, 1993,4(1):1-7.
doi: 10.1016/0961-9534(93)90021-U
[11] 温晓娜, 简有志, 解新明 . 象草资源的综合开发利用. 草业科学, 2009,26(9):108-112.
WEN X N, JIAN Y Z, XIE X M . The comprehensive exploitation and utilization of Pennisetum purpureum. Pratacultural Science, 2009,26(9):108-112. (in Chinese)
[12] 信金娜, 徐威, 王志英, 孙超, 张明磊 . 狼尾草作为观赏草的应用 . 草原与草坪, 2013(5):90-93.
XIN J N, XU W, WANG Z Y, SUN C, ZHANG M L . Application ofPennisetum alopecuroides as ornamental grass. Grassland and Turf, 2013(5):90-93. (in Chinese)
[13] 李有涵, 谢昭良, 解新明 . 5个象草品种的构件生物量特征及分配动态. 草业学报, 2011,20(5):11-18.
LI Y H, XIE Z L, XIE X M . Characters and dynamics modular biomass and its allocation ratio in five cultivars of elephant grass. Acta Prataculturae Sinica, 2011,20(5):11-18. (in Chinese)
[14] 陈志彤, 何水林, 黄毅斌 . 狼尾草属牧草研究进展. 草地学报, 2010,18(5):740-748.
CHEN Z T, HE S L, HUANG Y B . Research progress of Pennisetum rich. Acta Agrestia Sinica, 2010,18(5):740-748. (in Chinese)
[15] DATTA S, JANKOWICZ CIESLAK J, NIELEN S, INGELBRECHT L, TILL B J . Induction and recovery of copy number variation in banana through gamma irradiation and low coverage whole genome sequencing. Plant Biotechnology Journal, 2018,16(9):1644-1653.
doi: 10.1111/pbi.12901 pmid: 29476650
[16] 陈钟佃, 黄勤楼, 黄秀声, 冯德庆, 钟珍梅 . “闽牧6号”狼尾草的选育及田间种植技术. 家畜生态学报, 2012,33(1):53-55.
CHEN Z D, HUANG Q L, HUANG X S, FENG D Q, ZHONG Z M . Breeding and cultivation technology of Pennisetum. Journal of Domestic Animal Ecology, 2012,33(1):53-55. (in Chinese)
[17] 刘天增, 谢新春, 张巨明 . 海滨雀稗 60Co-γ辐射诱变突变体筛选 . 草业学报, 2017,26(7):62-70.
LIU T Z, XIE X C, ZHANG J M . Mutagenic effect of 60Co-γ irradiation on turf characteristics of Paspalum vaginatum. Acta Prataculturae Sinica, 2017,26(7):62-70. (in Chinese)
[18] 翁伯琦, 徐国忠, 郑向丽, 应朝阳, 黄毅斌 . 决明属牧草 60Co-γ射线辐射后代的若干特性研究 . 中国农业科学, 2005,38(12):2566-2570.
WENG B Q, XU G Z, ZHENG X L, YING C Y, HUANG Y B . Study on several characters of Chamaecrista spp. irradiated by 60Co-γ. Scientia Agricultura Sinica , 2005,38(12):2566-2570. (in Chinese)
[19] 王晋, 王世红, 赖勇, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊 . 大麦SSR标记遗传多样性及群体遗传结构分析. 核农学报, 2014,28(2):177-185.
WANG J, WANG S H, LAI Y, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J . Genetic diversity and population genetic structure analysis by using SSR markers in barley. Acta Agriculturae Nucleatae Sinica, 2014,28(2):177-185. (in Chinese)
[20] YAN H, ZHANG Y, ZENG B, YIN G, ZHANG X, JI Y, HUANG L, JIANG X, LIU X, PENG Y, MA X, YAN Y . Genetic diversity and association of EST-SSR and SCoT markers with rust traits in orchardgrass (Dactylis glomerata L.). Molecules, 2016,21(1):66.
doi: 10.3390/molecules21010066 pmid: 26760988
[21] 秦家友, 石海春, 柯永培, 余学杰, 袁继超 . 玉米辐射诱变系表型及SSR遗传差异研究. 玉米科学, 2012,20(2):41-47.
QIN J Y, SHI H C, KE Y P, YU X J, YUAN J C . Research on genetic difference of maize mutants by irradiation based on phenotypic and SSR. Journal of Maize Sciences, 2012,20(2):41-47. (in Chinese)
[22] 武炳超, 张欢, 童磊, 杜昭昌, 胡家菱, 陈燚, 张新全, 刘伟, 黄琳凯 . 象草不同辐射剂量诱变系表型及遗传变异研究. 草业学报, 2018,27(11):77-86.
WU B C, ZHANG H, TONG L, DU Z C, HU J L, CHEN Y, ZHANG X Q, LIU W, HUANG L K . Research on genetic and phenotypic differences of Pennisetum purpureum mutants generated by irradiation. Acta Prataculturae Sinica, 2018,27(11):77-86. (in Chinese)
[23] WANG C R, YAN H D, LI J, ZHOU S F, LIU T, ZHANG X Q, HUANG L K . Genome survey sequencing of purple elephant grass (Pennisetum purpureum Schum ‘Zise’) and identification of its SSR markers. Molecular Breeding, 2018,38(7):94.
doi: 10.1007/s11032-018-0849-3
[24] 韩微波, 张月学, 唐凤兰, 刘杰淋, 刘凤歧, 陈积山, 尚晨, 杜优颖 . 我国牧草诱变育种研究进展. 核农学报, 2010,24(1):62-66.
HAN W B, ZHANG Y X, TANG F L, LIU J L, LIU F Q, CHEN J S, SHANG C, DU Y Y . Research advances in pasture mutation breeding in China. Acta Agriculturae Nucleatae Sinica, 2010,24(1):62-66. (in Chinese)
[25] 谢向誉, 陆柳英, 曾文丹, 赖大欣, 严华兵 . 60Co-γ射线对木薯成熟种茎的诱变效应 . 农学学报, 2014,4(10):28-31.
XIE X Y, LU L Y, ZENG W D, LAI D X, YAN H B . The mutagenic effects of 60Co-γ on mature stakes of cassava . Journal of Agriculture, 2014,4(10):28-31. (in Chinese)
[26] 曾捷, 黄琳凯, 张新全, 张瑜, 张博涛, 张婧, 曹蔚, 刘欢, 严海东 . 60Co-γ辐射扁穗牛鞭草剂量筛选及表型变异研究 . 草地学报, 2014,22(4):828-833.
ZENG J, HUANG L K, ZHANG X Q, ZHANG Y, ZHANG B T, ZHANG J, CAO W, LIU H, YAN H D . Study on phenotype mutation of Hemarthria compressa and dose selection of 60Co-γ irradiation. Acta Agrestia Sinica , 2014,22(4):828-833. (in Chinese)
[27] 宣继萍, 郭爱桂, 刘建秀, 周久亚, 郭海林, 车胜利, 朱雪花, 高鹤 . 狗牙根辐射诱变后代外部性状变异分析. 草业学报, 2005,14(6):107-111.
XUAN J P, GUO A G, LIU J X, ZHOU J Y, GUO H L, CHE S L, ZHU X H, GAO H . Analysis on morphological variation of mutants of Cynodon dactylon induced by radiation. Acta Prataculturae Sinica, 2005,14(6):107-111. (in Chinese)
[28] 张彦芹, 贾炜珑, 杨丽莉, 郭先龙, 吴锜, 胡鸢雷, 林忠平 . 60Co辐射高羊茅性状变异研究 . 草业学报, 2005,14(4):65-71.
ZHANG Y Q, JIA W L, YANG L L, GUO X L, WU Q, HU Y L, LIN Z P . A Study on character mutation of 60Co-γ-ray irradiation in Festuca arundinacea. Acta Prataculturae Sinica, 2005,14(4):65-71. (in Chinese)
[29] 黄婷, 马啸, 张新全, 张新跃, 张瑞珍, 符开欣 . 多花黑麦草DUS测定中 SSR 标记品种鉴定比较分析. 中国农业科学, 2015,48(2):381-389.
HUANG T, MA X, ZHANG X Q, ZHANG X Y, ZHANG R Z, FU K X . Comparation of SSR molecular markers analysis of annual ryegrass varieties in DUS testing. Scientia Agricultura Sinica, 2015,48(2):381-389. (in Chinese)
[30] 杨盛婷, 武炳超, 冯芹, 黄秀, 张新全, 凌瑶, 黄婷, 黄琳凯 . 牛鞭草属DUS测试材料的SSR指纹图谱构建. 分子植物育种, 2017(5):1790-1799.
YANG S T, WU B C, FENG Q, HUANG X, ZHANG X Q, LING Y, HUANG T, HUANG L K . Constructing SSR fingerprinting of DUS testing materials inHemarthria. Molecular Plant Breeding, 2017(5):1790-1799. (in Chinese)
[31] MORGANTE M, HANAFEY M, POWELL W . Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 2002,30(2):194-200.
doi: 10.1063/1.363554 pmid: 11799393
[32] 罗宗志, 林洁荣, 林志魁, 陈碧成, 梅兰, 林占熺 . 热研4号王草和桂闽引象草的核型分析. 草业科学, 2016,33(9):1711-1717.
LUO Z Z, LIN J R, LIN Z K, CHEN B C, MEI L, LIN Z X . Karyotype analysis of Pennisetum purpureum × P. americanum cv.Reyan No.4 and P. purprueum cv. Guiminyin. Pratacultural Science, 2016,33(9):1711-1717. (in Chinese)
[33] 于立伟, 张林, 李静, 邸宏, 刘显君, 曾兴, 张德贵, 李新海, 王振华 . 空间诱变玉米自交系齐319的SSR标记变异分析. 核农学报, 2014,28(8):1345-1352.
YU L W, ZHANG L, LI J, DI H, LIU X J, ZENG X, ZHANG D G, LI X H, WANG Z H . SSR analysis of mutants from maize ‘Qi319’ inbred lines induced by space mutagenesis. Acta Agriculturae Nucleatae Sinica, 2014,28(8):1345-1352. (in Chinese)
[34] SEN A, ALIKAMANOGLU S . Analysis of drought-tolerant sugar beet(Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutation Research/fundamental & Molecular Mechanisms of Mutagenesis, 2012,738/739(1):38-44.
[1] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[2] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[3] QIN YanHong,WANG YongJiang,WANG Shuang,QIAO Qi,TIAN YuTing,ZHANG DeSheng,ZHANG ZhenChen. Complete Nucleotide Sequence Analysis and Genetic Characterization of the Sweet potato feathery mottle virus O and RC Strains Isolated from China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2207-2218.
[4] LI ChunJia, QIN Wei, XU ChaoHua, LIU HongBo, MAO Jun, LU Xin. Genetic Variations and Cluster Analysis of Photosynthetic Gas Exchange Parameters in Exotic Sugarcane Cultivars [J]. Scientia Agricultura Sinica, 2018, 51(12): 2288-2299.
[5] WANG YaFei, RUAN Tao, ZHOU Yan, WANG XueFeng, WU GenTu, SUN XianChao, ZHOU ChangYong, QING Ling. Genetic Variation of p20 of the Severe and Mild Strains of CTV in the Sweet Orange and Pummelo [J]. Scientia Agricultura Sinica, 2017, 50(7): 1343-1350.
[6] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[7] ZHAO PeiFang, ZHAO Jun, LIU JiaYong, ZAN FengGang, XIA HongMing, P.A. Jackson, J. Basnayake, N.G. Inman-Bamber, YANG Kun, ZHAO LiPing, QIN Wei, CHEN XueKuan, ZHAO XingDong, FAN YuanHong. Genetic Variation of Four Physiological Indexes as Impacted by Water Stress in Sugarcane [J]. Scientia Agricultura Sinica, 2017, 50(1): 28-37.
[8] GENG Li-ying, ZHANG Chuan-sheng, ZHAO Shu-yu, CHEN Juan, GONG Yuan-fang, LIU Zheng-zhu, ZHU Wen-jin, LI Xiang-long . Polymorphism of Pre-microRNA-1658 Gene in Chicken [J]. Scientia Agricultura Sinica, 2015, 48(19): 3919-3930.
[9] LIU Zhi-zhai, WU Xun, LI Yong-xiang, DING Xiao-yu, WANG Feng-ge, SHI Yun-su, SONG Yan-chun, ZHAO Jiu-ran, LI Yu, WANG Tian-yu. Assessment of Genetic Variation in Different Races of Maize Landraces in China [J]. Scientia Agricultura Sinica, 2015, 48(16): 3101-3111.
[10] SONG Tao-wei, CAI Hui-fen, LUO Wei-xing, LIU Ruo-yu, ZHANG Yi-yu, SUN Yan-yan, LIU Bin. Association of GHSR and GHRL Gene Genetic Variation with Growth Traits in Two Guizhou Goat Breeds [J]. Scientia Agricultura Sinica, 2015, 48(1): 140-153.
[11] CHEN Xue-Sen, ZHANG Jing, LIU Da-Liang, JI Xiao-Hao, ZHANG Zong-Ying, ZHANG Rui, MAO Zhi-Quan, ZHANG Yan-Min, WANG Li-Xia, LI Min. Genetic Variation of F1 Population Between Malus sieversii f. neidzwetzkyana and Apple Varieties and Evaluation on Fruit Characters of Functional Apple Excellent Strains [J]. Scientia Agricultura Sinica, 2014, 47(11): 2193-2204.
[12] WANG Ji-Ying, WANG Hai-Xia, CHI Rui-Bin, GUO Jian-Feng, WU Ying. Progresses in Research of Genome-Wide Association Studies in Livestock and Poultry [J]. Scientia Agricultura Sinica, 2013, 46(4): 819-829.
[13] LI Su-Ya, ZHANG Jian-Hong, CHEN Wen, HUANG Yan-Qun, SUN Gui-Rong, HAN Rui-Li, KANG Xiang-Tao. Genetic Variation Analysis of 3′-UTR Region of Chicken Lpin1 Gene and the Potential Effect on miRNA Binding Sites [J]. Scientia Agricultura Sinica, 2012, 45(8): 1613-1620.
[14] WANG Xiao-Yan, HE Qing-Ling, JING Rong-Bin, SONG Cheng-Yi. Genetic Variation of ESR Gene in Different Generations of Sujiang Pigs and the Impact on Reproductive Traits of Pigs [J]. Scientia Agricultura Sinica, 2012, 45(4): 768-773.
[15] WU Xiu-xiang; SHI Xue-kui; WU Hai-tao; MAO Yong-jiang; YANG Zhang-ping;LI Jun-ya; GAO Hui-jiang. Genetic Variation in CAPN1 Gene and Its Association with Carcass Traits in Chinese Cattle [J]. Scientia Agricultura Sinica, 2011, 44(7): 1466-1473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!