Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (21): 4107-4117.doi: 10.3864/j.issn.0578-1752.2017.21.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Water and Phosphorus Coupling on Root Growth, Biomass Allocation and Yield of Quinoa

PANG ChunHua1, ZHANG ZiWei1, ZHANG YongQing1,2   

  1. 1College of Life Sciences, Shanxi Normal University, Linfen 041004, Shanxi; 2 College of Geographical Sciences, Shanxi Normal University, Linfen 041004, Shanxi
  • Received:2017-03-05 Online:2017-11-01 Published:2017-11-01

Abstract: 【Objective】In arid regions, agricultural plantation is mainly restricted by water and fertilizer. To explore a optimal water/phosphorus ratio and provide a theoretical basis for the high yield of quinoa in arid land. In this study, the effects of water and phosphorus coupling on root growth, biomass allocation and high yield of quinoa (Chenopodium quinoa Willd) were studied. 【Method】 Guinoa was taken as an experimental material and pot-culturing experiment were carried out at 3 levels of water irrigation (W1, W2 and W3 represented 35%-45%, 55%-65% and 75%-85% soil moisture content) and 4 levels of phosphorus fertilizer (P2O5 application rates of P0, P1, P2, P3 were 0, 0.1, 0.2 and 0.4 g·kg-1), and root morphological and physiological indexes, biomass allocation and yield under the conditions of 12 different water and phosphorus coupling treatments were compared. 【Result】 At the same water irrigation level, the root parameters (root area, total root length, maximum root length, root diameter and root volume) were the highest under P2 treatment. At the same phosphorus level, the maximum root length and total root length reached the maximum under W2 treatment, and root area showed W2P0>W3P0 and W2P1>W3P1 under low phosphorus treatment (P0, P1). Under high phosphorus treatment (P2, P3) root area showed W2P2<W3P2 andW2P3<W3P3. Root diameter and root volume increased with the increasing of water content. Under the severe drought stress (W1) with P1 treatment, root activity were highest; but it was the highest under other water irrigation levels with P2 treatment. POD and SOD activities were highest and MDA was lowest under P2 (0.2 g P2O5·kg-1) treatment across all irrigations; The appropriate phosphorus fertilizer (P2) significantly reduced the soluble sugar and proline content. The appropriate ratio of water and phosphorus (W3P2, W3P1) was beneficial for  biomass of stem and leaf weight, and yield of quinoa, while the weight of root and panicle were the highest under W2P3 treatment. High water irrigation benefited for biomass allocation between stems and leaves; Low water irrigation was beneficial for biomass allocation between root and panicle at 3 water levels, P2(0.2 g P2O5·kg-1) treatment was suitable for formation of apical spike; Low phosphorus promoted the number of branch and spike, 1000-grain weight and grain weight, while they were specific under high phosphorus conditions, and at various levels of phosphorus with W3 treatment gain weight reached the maximum, respectively. 【Conclusion】 The suitable phosphorus supplement (P2, 0.2 g P2O5·kg-1) improved root activity, root growth, increased area of the root contacting and soil, strengthened antioxidant ability of root, and therefore enhanced the drought resistance of quinoa. and the optimal ratio of water and phosphorus (W3P2) was suitable for biomass accumulation and high yield of quinoa.

Key words: quinoa, water and phosphorus coupling, root system, biomass, yield

[1]    张建国, 晋京串, 肖宁月. 山西旱地农业降水高效利用技术探讨. 山西农业科学, 2009, 37(1): 52-54.
ZHANG J G, JIN J C, XIAO N Y. Approach to efficient utilization of precipitation in arid land in Shanxi. Journal of Shanxi Agricultural Sciences, 2009, 37(1): 52-54. (in Chinese )
[2]    池宝亮. 山西旱地农业发展的水问题分析. 山西农业科学, 2010, 38(1): 31-34.
CHI B L. Water problem analysis on growth of dry land farming in Shanxi. Journal of Shanxi Agricultural Sciences, 2010, 38(1): 31-34. (in Chinese )
[3]    JACOBSEN S E, LIU F L, JENSEN C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 2009, 122(2): 281-287.
[4]    HARIADI Y, MARANDON K, TIAN Y, JACOBSEN S E, SHABALA S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2011, 62(1): 185-193.
[5]    KOYRO H W, EISA S S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant & Soil, 2008, 302(1): 79-90.
[6]    JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003, 19(1/2): 99-109.
[7]    REPOCARRASCO R, ESPINOZA C, JACOBSEN S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kaniwa (Chenopodium pallidicaule). Food Reviews International, 2003, 19(1/2):179-189.
[8]    刘锁荣, 范文虎. 促进山西藜麦种植规模化及产业链形成的建议. 山西农业科学, 2011, 39(7): 767-769.
LIU S R, FAN W H. Suggestion to promote scale cultivation and formation of production chain of quinoa in Shanxi. Journal of Shanxi Agricultural Sciences, 2011, 39(7): 767-769. (in Chinese )
[9]    PRAKASH D, PAL M. Chenopodium: seed protein, fractionation and amino acid composition. International Journal of Food Sciences & Nutrition, 2009, 49(4): 271-275.
[10]   BHARGAVA A, SHUKLA S. Genetic variability and heritability of selected traits during different cuttings of vegetable Chenopodium. Indian Journal of Genetics & Plant Breeding, 2003, 63(4): 359-360.
[11]   JACOBSEN S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 2003, 19(1/2): 167-177.
[12] JACOBSEN S E. The situation for quinoa and its production in southern Bolivia: From economic success to environmental disaster. Journal of Agronomy & Crop Science, 2011, 197(5): 390-399.
[13]   马祥庆, 梁霞. 植物高效利用磷机制的研究进展. 应用生态学报, 2004, 15(4): 712-716.
MA X Q, LIANG X. Research advances in mechanism of high phosphorus use efficiency of plants. Chinese Journal of Applied Ecology, 2004, 15(4): 712-716. (in Chinese)
[14]   李继云, 孙建华, 刘全友, 童依平. 不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究. 西北植物学报, 2000, 20(4): 503-510.
LI J Y, SUN J H, LIU Q Y, TONG Y P. A study on the physiological properties of root systems in various wheat varieties and the effects of their phosphorus uptake and utilization efficiency on the yields. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(4): 503-510. (in Chinese)
[15]   王瑜, 宁堂原, 迟淑筠, 田慎重, 李增嘉. 不同施磷水平下灌水量对小麦水分利用特征及产量的影响. 水土保持学报, 2012, 26(3):232-237.
WANG Y, NING T Y, CHI S J, TIAN S Z, LI Z J. Effect of irrigation amount on water use characteristics and grain yield of wheat under different phosphorus application rates. Journal of Soil and Water Conservation, 2012, 26(3): 232-237. (in Chinese)
[16]   张均, 贺德先, 段增强. 水磷耦合对小麦次生根特殊根毛形态与结构的影响. 生态学报, 2011, 31(11):3110-3119.
ZHANG J, HE D X, DUAN Z Q. Effects of water and phosphorus supply on morphology and structure of special root hairs on nodal roots of wheat (Triticum aestivum L.). Acta Ecologica Sinica, 2011, 31(11): 3110-3119. (in Chinese )
[17]   李万春, 姚雅琴, 于涛, 汪李宏, 高妍夏, 张富仓, 岳文俊. 水氮磷耦合对拔节期冬小麦根系水分调节特性的影响. 西北农林科技大学学报(自然科学版), 2012, 40(8):60-68.
LI W C, YAO Y Q, YU T, WANG L H, GAO Y X, ZHANG F C, YUE W J. Water regulation characteristics of winter wheat root at jointing stage in different nitrogen, phosphorus and water couplings. Journal of Northwest A & F University (Natural Science Edition), 2012,40(8): 60-68. (in Chinese)
[18]   唐宏亮, 马领然, 张春潮, 段萧萧. 水分和磷对苗期玉米根系形态和磷吸收的耦合效应. 中国生态农业学报, 2016, 24(5): 582-589.
TANG H L, MA L R, ZHANG C C , DUAN X X. Coupled effect of water and phosphorus on root growth and phosphorus uptake of maize at seedling stage. Chinese Journal of Eco-Agriculture, 2016, 24(5): 582-589. (in Chinese)
[19]   贡布扎西, 旺姆, 张崇玺, 杨庆寿. 南美藜在西藏的生物学特性研究. 西北农业学报, 1994, 3(4): 81-86.
GONGBU Z X, WANG M, ZHANG C X, YANG Q S. Preliminary study of biological characters of quinoa in Tibet. Acta Agriculturae Boreali-Occidentalis Sinica, 1994, 3(4): 81-86. (in Chinese)
[20]   刘明, 逄焕成. 水磷互作对黑垆土春小麦生长及产量的影响. 中国土壤与肥料, 2007(4):73-75.
LIU M, PANG H C. Research on interaction of water and phosphorus on growth and yield of spring wheat in loessial soil. Soil and Fertilizer Science, 2007(4): 73-75. (in Chinese)
[21]   于亚军, 李军, 贾志宽, 刘世新, 李永平. 旱作农田水肥耦合研究进展. 干旱地区农业研究, 2005, 23(3): 220-224.
YU Y J, LI J, JIA Z K, LIU S X, LI Y P. Research progress of water and fertilizer coupling on dry land. Agricultural Research in the Arid Areas, 2005, 23(3): 220-224. (in Chinese)
[22]   张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 第 4版. 北京:高等教育出版社, 2009: 100-228.
ZHANG Z L, QU W J, LI X F. Experimental Guidance for Plant Physiology. 4th ed. Beijing: Higher Education Press, 2009: 100-228. (in Chinese)
[23]   丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48(5): 872-881.
DING H, ZHANG Z M, DAI L X, YANG J S, CI D W, QIN F F, SONG W W, WAN S B. Effects of water and nitrogen interaction on peanut root growth and yield. Scientia Agricultura Sinica, 2015, 48(5): 872-881. (in Chinese)
[24]   LILLEY J M, FUKAI S. Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting pattern and soil water extraction. Field Crops Research, 1994, 37(3): 205-213.
[25]   倪瑞军, 张永清, 庞春花, 武如心, 张紫薇, 田烨, 刘丽雯. 藜麦幼苗对水氮耦合变化的可塑性响应. 作物杂志, 2015(6): 91-98.
NI R J, ZHANG Y Q, PANG C H, WU R X, ZHANG Z W, TIAN Y, LIU L W. Plastic responses of quinoa seedling to change of water and nitrogen coupling. Crops, 2015(6): 91-98. (in Chinese)
[26]   王丽燕. NaCl处理对野大豆生理生化特性的影响. 大豆科学, 2008, 27(6): 1067-1071.
WANG L Y. Effects of NaCl stress on physiological and biochemical characters of glycine soja. Soybean Science, 2008, 27(6): 1067-1071. (in Chinese)
[27]   钟鹏, 朱占林, 李志刚, 王建丽, 张玉玲. 干旱和低磷胁迫对大豆叶保护酶活性的影响. 中国农学通报, 2005, 21(2): 153-154, 204.
ZHONG P, ZHU Z L, LI Z G, WANG J L, ZHANG Y L. Effects of low-phosphorus and drought stresses on protective enzyme activities of soybean. Chinese Agricultural Science Bulletin, 2005, 21(2): 153-154, 204. (in Chinese)
[28]   李鑫, 张永清, 王大勇, 罗海婧, 刘丽琴, 王姣. 水氮耦合对红小豆根系生理生态及产量的影响. 中国生态农业学报, 2015, 23(12): 1511-1519.
LI X, ZHNAG Y Q, WANG D Y, LUO H J, LIU L Q, WANG J. Effects of coupling water and nitrogen on root physio-ecological indices and yield of adzuki bean. Chinese Journal of Eco-Agriculture, 2015, 23(12): 1511-1519. (in Chinese)
[29]   闫建成, 梁存柱, 付晓玥, 王炜, 王立新, 贾成朕. 草原与荒漠一年生植物性状对降水变化的响应. 草业学报, 2013, 22(1): 68-76.
YIN J C, LIANG C Z, FU X Y, WANG W, WANG L X, JIA C L. The responses of annual plant traits to rainfall variation in steppe and desert regions. Acta Prataculturae Sinica, 2013, 22(1): 68-76. (in Chinese)
[30]   郝婧, 张婕, 张沛沛, 郭东罡, 王丽媛, 上官铁梁, 黄汉富, 宋向 阳. 煤矸石场植被自然恢复初期草本植物生物量研究. 草业学报, 2013, 22(4): 51-60.
HAO J, ZHANG J, ZHANG P P, GUO D G, WANG L Y, SHANGGUAN T L, HUANG H F, SONG X Y. A study on the biomass of herbs at the initial natural reclamation stage of plants in gangue fields. Acta Prataculturae Sinica, 2013, 22(4): 51-60. (in Chinese)
[31]   任海彦, 郑淑霞, 白永飞. 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 2009, 33(6): 1065-1074.
REN H Y, ZHENG S X, BAI Y F. Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 2009, 33(6): 1065-1074. (in Chinese)
[32]   李旭东, 张春平, 傅华. 黄土高原典型草原草地根冠比的季节动态及其影响因素. 草业学报, 2012, 21(4):307-312.
LI X D, ZHANG C P, FU H. Seasonal dynamics of root-shoot ratio and the effect of factors in grazed and ungrazed grasslands of the Loess Plateau. Acta Prataculturae Sinica, 2012, 21(4): 307-312. (in Chinese)
[33]   梁飞, 田长彦, 田明明, 梁笛, 张科. 追施氮肥对盐地碱蓬生长及其改良盐渍土效果研究. 草业学报, 2013, 22(3): 234-240.
LIANG F, TIAN C Y, TIAN M M, LIANG D, ZHANG K. Effect of nitrogen topdressing on the growth of Suaeda salsa and the improvement of saline soil. Acta Prataculturae Sinica, 2013, 22(3): 234-240. (in Chinese)
[34]   张紫薇, 庞春花, 张永清, 倪瑞军, 杨世芳, 王璐瑗, 刘丽琴. 等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响. 作物杂志, 2017(01): 119-126.
ZHANG Z W, PANG C H, ZHANG Y Q, NI R J, YANG S F, WANG L Y, LIU L Q. Effects of iso-osmotic NaCl and PEG stress and rewatering on seed germination and seedling growth of quinoa. Crops, 2017(1): 119-126. (in Chinese)
[35]   GENG Y P, PAN X Y, XU C Y, ZHANG W J, LI B, CHEN J K. Phenotypic plasticity of invasive alternanthera philoxeroides in relation to different water availability compared to its native congener. Acta Oecologica, 2006, 30(3): 380-385.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!