Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (13): 2614-2623.doi: 10.3864/j.issn.0578-1752.2017.13.019

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Transcriptome of Apis cerana cerana larval gut Under the Stress of Ascosphaera apis

CHEN DaFu, GUO Rui, XIONG CuiLing, LIANG qin, ZHENG YanZhen, XU XiJian, ZHANG ZhaoNan, HUANG ZhiJian, ZHANG Lu, WANG HongQuan, XIE YanLing, TONG XinYu   

  1. College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2016-12-26 Online:2017-07-01 Published:2017-07-01

Abstract: 【Objective】So far, no study on application of next-generation sequencing technology for the research of chalkbrood disease was reported. In the present research, RNA-seq technology was utilized to deep sequence of normal and Ascosphaera apis-treated 4th instar Apis cerana cerana larval gut to mine larvae’s responses to A. apis challenge.【Method】AcCK (un-treated group) and AcT (A. apis-treated group) were sequenced on Illumina HiSeq 2500 platform. After evaluation and filtration of raw data from RNA-seq, differentially expressed gene (DEG) analysis was performed using edgeR software, further, Gene Ontology (GO) and KEGG pathway enrichment analyses were carried out, and finally, real-time quantitative PCR (qRT-PCR) was conducted to validate the RNA-seq data.【Result】 In total, RNA-seq produced 188 457 338 raw reads, and after filtration, 182 088 448 clean reads were obtained, Q20 and Q30 of each sample were above 97.96% and 94.97%, respectively, indicating that RNA-seq data in this research were with high quality. principle component analysis (PCA) was performed on all genes level and the result showed PC1 and PC2 were able to account for 75.8% and 10.7% of the expressed genes’ overall differences, respectively. DEG analysis result displayed that there were 344 up-regulated genes and 239 down-regulated genes in AcCK VS AcT. GO enrichment analysis result showed that the DEGs were enriched in 36 GO terms, among them, the mostly enriched ones were cell (106 unigenes), cell part (106 unigenes) and metabolic process (104 unigenes). KEGG pathway enrichment analysis result suggested that up- and down-regulated genes were enriched in 72 and 45 pathways, respectively, and the mostly enriched pathways for up-regulated genes were ribosome (72 unigenes), carbon metabolism (16 unigenes) and glycolysis/gluconeogenesis (14 unigenes), while the mostly enriched pathways for down-regulated genes were carbon metabolism (9 unigenes), glyoxylate and dicarboxylate metabolism (8 unigenes) and amino acids biosynthesis (7 unigenes). further analysis demonstrated that the immune-related genes in A. c. cerana larval gut were activated, while the metabolism-related genes were greatly inhibited.【Conclusion】The findings of the study not only uncovered the A. c. cerana larval gut’s responses to A. apis during the early stage of invasion, but also provided key information for clarifying the mechanism underlying the host’s responses to A. apis, thus laying a foundation for functional investigation of key responding genes.

Key words: Apis cerana cerana, larval gut, Ascosphaera apis, transcriptome, RNA-seq

[1]    GALIZIA C G, EISENHARDT D, GIURFA M, MENZEL R. Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Dordrecht Netherlands. New York: Springer, 2012.
[2]    BEGNA D, Han B, FENG M, FANG Y, LI J. Differential expression of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: a deep insight into caste pathway decisions. Journal of Proteome Research, 2012, 11(2): 1317-1329.
[3]    ZAYED A, ROBINSON G. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annual Review of Genetics, 2012, 46(6): 591-615.
[4]    FORET S, KUCHARSKI R, PELLEGRINI M, FENG S H, JACOBSEN S E, ROBINSON G E, MALESZKA R. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13): 4968-4973.
[5]    KURZE C, ROUTTU J, MORITZ R F. Parasite resistance and tolerance in honeybees at the individual and social level. Zoology, 2016, 119(4): 290-297.
[6]    Committee on the Status of Pollinators in North America. Status of pollinators in north America. National Academies Press, 2007.
[7]    AIZEN M A, GARIBALDI L A, CUNNINGHAM S A, KLEIN A M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 2009, 103(9): 1579-1588.
[8]    SPILTOIR C F. Life cycle of Ascosphaera apis. American Journal of Botany, 1955, 42(6): 501-518.
[9]    LUMBSCH H T, Huhndorf S M. Outline of Ascomycota. Myconet, 2007, 13: 1-58.
[10]   BISSETT J. Contribution toward a monograph of the genus Ascosphaera. Canadian Journal of Botany, 1988, 66(12): 2541-2560.
[11]   CHORBI?SKI P. Enzymatic activity of strains of Ascosphaera apis. Medycyna weterynaryjna, 2003, 59(11): 1019-1022.
[12]   BAMFORD S, HEATH L A F. The effects of temperature and pH on the germination of spores of the chalkbrood fungus, Ascosphaera apis. Journal of Apicultural Research, 1989, 28(1): 36-40.
[13]   WINSTON M L. The biology of the honey bee//Development and nutrition. Harvard University Press, Cambridge, USA, 1991.
[14]   FLORES J M, SPIVAK M, GUTIÉRREZ I. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Veterinary Microbiology, 2005, 108(1/2): 141-144.
[15]   BAILEY L. Honey Bee Pathology. Academic Press, London, UK, 1991.
[16]   THEANTANA T, CHANTAWANNAKUL P. Protease and beta-N- acetylglucosaminidase of honey bee chalkbrood pathogen Ascosphaera apis. Journal of Apicultural Research, 2008, 47(1): 68-76.
[17]   EVANS J D, SPIVAK M. Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 2010, 103(Suppl. 1): S62-S72.
[18]   TANJI T, HU X, WEBER A N, IP Y. Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27(12): 4578-4588.
[19]   HORNITZKY M. Literature review of chalkbrood. A report for the RIRDC. Publication No. 01/150, Kingston, ACT, AU. 2001.
[20]   梁勤, 陈大福, 王建鼎. 营养生态条件对蜜蜂球囊菌生长及产孢的影响. 中国生态农业学报, 2001, 9(4): 31-34.
LIANG Q, CHEN D F, WANG J D. Effects on the mycelia growth and spore-forming of Ascosphaera apis under ecological condition of nutrients. Chinese Journal of Eco-Agriculture,2001, 9(4): 31-34. (in Chinese)
[21]   李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012, 55(7): 790-797.
LI J H, ZHENG Z Y, CHEN D F, LIANG Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012, 55(7): 790-797. (in Chinese)
[22]   熊翠玲, 陈大福, 付中民, 马晓云, 梁勤. 蜜蜂球囊菌检测分子标记的灵敏性测定. 中国蜂业, 2010, 61(11): 16-18.
XIONG C L, CHEN D F, FU Z M, MA X Y, LIANG Q. Determination of the sensitivity of DNA molecular marker for detecting Ascosphaera apis. Apiculture of China, 2010, 61(11): 16-18. (in Chinese)
[23]   席伟军, 李江红, 陈大福, 梁勤. 环介导等温扩增(LAMP)技术检测蜜蜂球囊菌. 中国农业科学, 2016, 49(4): 765-774.
XI W J, LI J H, CHEN D F, LIANG Q. Diagnosis of the Ascosphaera apis by the loop-mediated isothermal amplification. Scientia Agricultura Sinica, 2016, 49(4): 765-774. (in Chinese)
[24]   郑志阳, 李江红, 梁勤, 陈大福. 蜜蜂球囊菌分泌多种胞外酶侵染蜜蜂幼虫. 福建农林大学学报 (自然科学版), 2011, 40(3): 280-284.
ZHENG Z Y, LI J H, LIANG Q, CHEN D F. Ascosphaera apis secretes multiple extracellular enzymes to infect honeybee larvae. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2011, 40(3): 280-284. (in Chinese)
[25]   Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443(7114): 931-949.
[26]   EVANS J D, ARONSTEIN K A, CHEN Y P, HETRU C, IMLER J L, JIANG H, KANOST M, THOMPSON G J, ZOU Z, HULTMARK D. Immune pathways and defense mechanisms in honey bees, Apis mellifera. Insect Molecular Biology, 2006, 15(5): 645-656.
[27]   ARONSTEIN K A, MURRAY K D, SALDIVAR E. Transcriptional responses in honey bee larvae infected with chalkbrood fungus. BMC Genomics, 2010, 11: 391.
[28]   CORNMAN R S, LOPEZ D, EVANS J D. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae. PLoS ONE, 2013, 8(6): e65424.
[29]   JULIE A, BARBARA M A, BERNARD V, CATHERINE T, FRÉDÉRIC D, NICOLAS B. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS ONE, 2014, 9(3): e91686.
[30]   PARK D, JUNG J W, CHOI B S, JAYAKODI M, LEE J, LIM J, YU  Y, CHOI Y S, LEE M L, PARK Y, CHOI I Y, YANG T J, EDWARDS O R, NAH G, KWON H W. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015, 16: 1.
[31]   徐细建, 郭睿, 骆群, 熊翠玲, 梁勤, 张串联, 郑燕珍, 张曌楠, 黄枳腱, 张璐, 李汶东, 陈大福. 中华蜜蜂幼虫肠道参考转录组的de novo组装及SSR分子标记鉴定. 中国农业科学, 2017, 50(6): 1157-1166.
Xu X J, Guo R, Luo Q, Xiong C L, Liang Q, Zhang C L, Zheng Y Z, Zhang Z N, Huang Z J, Zhang L, Li W D, Chen D F. De novo transcriptome assembly for Apis cerana cerana larval gut and identification of SSR molecular markers. Scientia Agricultura Sinica, 2017, 50(6): 1157-1166. (in Chinese)
[32] JENSEN A B, ARONSTEIN K, FLORES J M, VOJVODIC S, PALACIO M A, SPIVAK M. Standard methods for fungal brood disease research. Journal of Apicultural Research, 2013, 52(1): 79-88.
[33]   王倩, 孙亮先, 肖培新, 刘锋, 康明江, 胥保华. 室内人工培育中华蜜蜂幼虫技术研究. 山东农业科学, 2009(11): 113-116.
WANG Q, SUN L X, XIAO P X, LIU F, KANG M J, XU B H. Study on technology for indoor artificial feeding of Apis cerana cerana larvae. Shandong Agriculture Sciences, 2009(11): 113-116. (in Chinese)
[34]   LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25.
[35]   HURGOBIN B. Short read alignment using SOAP2//Plant bioinformatics: methods and protocols. 2nd ed. New York, NY, United States: Humana Press, 2016: 241-252.
[36]   ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
[37]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method. Methods, 2001, 25: 402-408.
[38]   ORIHEL T C. The peritrophic membrane: its role as a barrier to infection of the arthropod host//Maramorosch K, Shope R E. Invertebrate Immunity. Academic Press, New York, USA, 1975: 67-73.
[39]   GLI?SKI Z, JAROSZ J. Infection and immunity in the honey bee Apis mellifera. Apiacta, 2001, 36: 12-24.
[40]   GLINSKI Z, BUCZEK K. Response of the Apoidea to fungal infections. Apiacta, 2003, 38: 183-189.
[41]   McBride W H, Iwamoto K S, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene, 2003, 22: 5755-5773.
[1] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[2] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[3] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[7] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[8] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[9] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[10] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[11] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[12] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[13] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[14] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[15] LIN Bing,CHEN YiQuan,ZHONG HuaiQin,YE XiuXian,FAN RongHui. Analysis of Key Genes About Flower Color Variation in Iris hollandica [J]. Scientia Agricultura Sinica, 2021, 54(12): 2644-2652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!