Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (13): 2592-2603.doi: 10.3864/j.issn.0578-1752.2017.13.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Genetic Effect Analysis of SNPs from 6 Genes on SCS and Milk Production Traits in Xinjiang Brown Cattle

LIU LiYuan1,2, ZHOU JingHang2, ZHANG MengHua1, LI JinXia1, FANG JiQing3, TAN ShiXin4, WANG AiFang4, HUANG XiXia1, WANG YaChun5   

  1. 1College of Animal Science, Xinjiang Agricultural University, Urumqi 830052; 2School of Agriculture, Ningxia University, Yinchuan 750021; 3Cattle Farm in Urumqi, Urumqi 830000; 4Xinjiang Tianshan Animal Husbandry Biological Engineering Co., Ltd, Changji 831100, Xinjiang; 5College of Animal Science and Technology, China Agricultural University, Beijing 100193
  • Received:2016-11-03 Online:2017-07-01 Published:2017-07-01

Abstract:  【Objective】The association between polymorphisms of ERAP2, Cwc27, PPFIBP2, THADA, ZNF804B and AMHR2 genes and somatic cell score (SCS) and milk production traits in Xinjiang brown cattle were studied in order to find out molecular markers association with SCS and/or milk production traits.【Method】Taking 169 Xinjiang brown cattle cows as experimental animals from Xinjiang Urumqi cattle farm and Xinjiang Tianshan Animal Husbandry and Biotechnology Co., Ltd. The experimental data including Dairy Herd Improvement records (including milk fat percentage, milk protein percentage, lactose percentage, total solid content and SCS) and milk yield of 305d, 10 SNPs were selected from exon area based on the results of DNA sequencing of 15 Chinese Holstein cows in an initial study and genotyped by Sequenom MassARRAY Genotype technology, the association between SNPs or haplotype and SCS and milk yield traits were analyzed by the least squares method in the GLM procedure of SAS8.1.【Result】The results showed that the 10 SNPs were polymorphic, and 9 SNPs were in Hardy-Weinberg equilibrium. Association analysis results showed that two SNPs in ERAP2 gene (T98741711C and G98736141A) had a highly significant association with milk yield of 305d in Xinjiang brown cattle(P<0.001), the milk yield of TT and GG genotype was the highest in T98741711C locus and G98736141A locus, respectively; C45667492G locus in PPFIBP2 gene had a significant association with milk lactose percentage (P<0.005), GG genotype was the highest; Cwc27 (T14533269A) had a significant association with milk fat percentage and total solid content(P<0.005) and had a highly significant association with SCS(P<0.001), milk fat percentage of TT genotype was the highest and SCS of AA genotype was higher than AT and TT genotypes; AMHR2 (C26758055G) had a highly significant association with milk protein percentage and total solid content(P<0.001), GG genotype was higher than CC and GC genotypes. The results of linkage disequilibrium analysis and haplotype construction revealed that the 10 SNPs constructed two haplotype blocks, among them, SNP1 and SNP2 were in linkage disequilibrium state(0.3<r2<0.6), SNP4 and SNP10 in strong linkage disequilibrium state(r2>0.6). Then the correlation between haplotype and SCS and/or milk production traits was analyzed, and the results showed that haplotype had no significant association with SCS and milk production traits(P>0.001).【Conclusion】In this study, it was found that ERAP2, Cwc27, PPFIBP2 and AMHR2 genes had a significant association with SCS and milk production traits, and the results of the study will provide a theoretical basis and reference for the molecular marker-assisted selection in Xinjiang Brown Cattle.

Key words: Xinjiang Brown Cattle, SCS, milk production traits, MassArray, association analysi

[1]    JIANG L, LIU J, SUN D, MA P, DING X, YU Y, ZHANG Q. Genome wide association studies for milk production traits in Chinese Holstein population. Plos One, 2010, 5(10): e13661-e13661.
[2]    初芹, 李东, 侯诗宇, 石万海, 刘林, 王雅春. 基于DNA池测序法筛选奶牛高信息量SNP标记的可行性. 遗传, 2014, 36(7): 691-696.
CHU Q, LI D, HOU S Y, SHI W H, LIU L, WANG Y C. Direct sequencing of DNA pooling for screening highly informative SNPs in dairy cattle. Hereditas, 2014, 36(7): 691-696. (in Chinese)
[3]    唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012, 28(12): 154-158.
TANG L Q, XIAO C L, WANG W P. Research and Application Progress of SNP Markers. Chinese Agricultural Science Bulletin, 2012, 28(12): 154-158. (in Chinese)
[4]    奇瑞利, 赖淑静, 袁陶燕, 何俊, 吴兵兵, 敷衍, 牛冬. 奶牛产奶性状候选基因的研究进展. 畜牧与兽医, 2013, 45(4): 94-97.
QI R L, LAI S J, YUAN T Y, HE J, WU B B, FU Y, NIU D. Advances in research on candidate genes for milk production in dairy cows. Animal Husbandry & Veterinary Medicine, 2013, 45(4): 94-97.
[5]    王荣霞, 袁陶燕, 赖淑静, 唐军旺, 杜雪 , 赵婉秋, 敷衍, 牛冬. 影响奶牛泌乳性状的候选基因研究进展. 畜牧与兽医, 2015, 47(12): 144-146.
WANG R X, YUAN T Y, LAI S J, TANG J W, DU X, ZHAO W Q, FU Y, NIU D. Advances in research on candidate genes affecting milk character of dairy cattle. Animal Husbandry & Veterinary Medicine, 2015, 47(12): 144-146. (in Chinese)
[6]    王丽娟, 李秋玲, 王长法, 王洪梅, 李建斌, 侯明海, 高远东, 仲跻峰. 奶牛PRL基因CRS-PCR多态性与产奶性状的关联分析. 畜牧兽医学报, 2009, 40(3): 303-308.
WANG L J, LI Q L, WANG C F, WANG H M, LI J B, HOU M H, GAO Y D, ZHONG J F. CRS-PCR Polymorphisms of prolactin gene and its relationship with milk production traits in Chinese Holstein Cows. Acta Veterinaria et Zootechnica Sinica, 2009, 40(3): 303-308. (in Chinese)
[7]    VIITALA S, SZYDA J, BLOTT S, SCHULMAN N, LIDAUER M, MÄKI-TANILA A, GEORGES M, VILKKI J. The role of the bovine growth receptor and prolactin genes in milk, fat and protein production in finish ayrshire dairy cattle. Genetics, 2006, 173: 2151-2164.
[8]    LEONARD S, KHATIB H, SCHUTZKUS V, CHANG Y M, MALTECCA C L. Effects of the osteopontin gene variants on milk production traits in dairy cattle. Journal of Dairy Science, 2005, 88(11): 4083-4086
[9]    王杰, 原清会, 曾长国, 张明, 赖松家. 中国荷斯坦牛OPN基因内含子4多态性及其与产奶性状的相关分析. 中国畜牧杂志, 2010, 46(15): 5-8.
WANG J, YUAN Q H, ZENG C G, ZHANG M, LAI S J. Effects of OPN gene on litter size in a Large White and a Landrace Herd. Chinese Journal of Animal Science, 2010, 46(15): 5-8. (in Chinese)
[10]   张晓东. 奶牛DGAT1基因SNPs分析及其与产奶性能关系的研究[D]. 合肥: 安徽农业大学, 2009.
ZHANG X D. Studies on SNPs of DGAT1 gene and its association with milk production traits in dairy cattles[D]. Hefei: Anhui Agricultural University, 2009. (in Chinese)
[11]   贾晋, 马妍, 孙东晓, 张毅, 张沅. 中国荷斯坦牛DGAT1基因与产奶性状关联分析. 畜牧兽医学报, 2008, 39(12): 1661-1664.
JIA J, MA Y, SUN D X, ZHANG Y, ZHANG Y. Association analysis between DGAT1 gene and milk production traits in Chinese Holstein. Acta Veterinaria et Zootechnica Sinica, 2008, 39(12): 1661-1664. (in Chinese)
[12]   季敏, 刘学洪, 余长林, 余选富, 刘定江, 史宪伟. 槟榔江水牛STAT5A基因多态性及其与产奶性状的关联性研究. 中国牛业科学, 2013, 39(4): 29-35.
JI M, LIU X H, YU C L, YU X F, LIU D J, SHI X W. Association of STAT5A polymorphism and milk production traits in Binlangjiang Buffalo. China Cattle Science, 2013, 39(4): 29-35. (in Chinese)
[13]   张晓东, 殷宗俊. 奶牛产奶性状候选基因研究进展. 中国奶牛, 2007(11): 23-27.
ZHANG X D, YIN Z J. Advances in research on candidate genes for milk production of dairy cows. China Dairy Cattle, 2007(11): 23-27. (in Chinese)
[14]   VIGNAL A, MILAN D, SANCRISTOBAL M, EGGEN A. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 2002, 34(3): 1-31.
[15]   赵辉, 王威, 张清润, 高扬, 赵洪斌, 周珺, 林伟, 曾长青. 高通量飞行时间质谱基因分型方法的研究. 生物化学与生物物理进展, 2005(07): 667-672.
ZHAO H, WANG W, ZHANG Q R, GAO Y, ZHAO H B, ZHOU J, LIN W, ZENG C Q. The Study of high throughput MALDI-TOF genotyping assay. Progress in Biochemistry and Biophysics, 2005(07): 667-672. (in Chinese)
[16]   唐剑频, 侯一平. 基质辅助激光解吸/离子化飞行时间质谱分析多态性遗传标记. 中华医学遗传学杂志, 2005(02): 185-188.
TANG J P, HOU Y P. Analysis of polymorphic markers by matrix-assisted laser desorption/ionizat ion time-of-flight mass spectrometry. China Journal of Medical Genetics, 2005(02): 185-188. (in Chinese)
[17]   邓廷贤, 庞春英, 朱鹏, 段安琴, 陆杏蓉, 杨炳壮, 梁贤威. 飞行时间质谱法检测水牛黑素皮质素受体4基因多态性. 中国畜牧兽医, 2015(07): 1800-1806.
DENG T X, PANG C Y, ZHU P, DUAN A Q, LU X R, YANG B Z, LIANG X W. Rapid detection of SNP in buffalo MC4R gene by matrix-assisted laser desorption/Ionization time-of-flight mass spectrometry. China Animal Husbandry & Veterinary Medicine, 2015(07): 1800-1806. (in Chinese)
[18]   付雪峰, 王雅春, 郭俊青, 郭志勤, 程黎明, 周光瑞, 黄锡霞, 徐勇. 新疆褐牛产奶量校正系数的制定. 畜牧兽医学报, 2010, 41(5): 536-542.
FU X F, WANG Y C, GUO J Q, GUO Z Q, CHENG L M, ZHOU G R, HUANG X X, XU Y. Study of adjustment for standardizing milking record in Xinjiang Brown Cattle. Acta Veterinaria et Zootechnica Sinica, 2010, 41(5): 536-542. (in Chinese)
[19]   MAO Y, ZHU X, XING S, ZHANG M, ZHANG H, KARROW N, YANG L, YANG Z. Polymorphisms in the promoter region of the bovine lactoferrin gene influence milk somatic cell score and milk production traits in Chinese Holstein cows. Research in Veterinary Science, 2015, 103: 107-112.
[20]   邹思湘. 动物生物化学. 北京: 中国农业出版社, 2005: 307-320.
ZOU S X. Animal Biochemistry. Beijing: China Agriculture Press, 2005: 307-320. (in Chinese)
[21]   GABRIEL S, ZIAUGRA L, TABBAA D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics, 2009, 2(2): 2. 12. 1-2. 12. 18.
[22]   郭爱华, 徐沪济. ERAP1结构与功能研究进展. 分子诊断与治疗杂志, 2013, 5(2): 128-133.
GUO A H, XU H J. Structural and functional research progress of ERAP1. Journal of Molecular Diagnostics and Therapy, 2013, 5(2): 128-133. (in Chinese)
[23]   KUIPER J J W, SETTEN J V, RIPKE S, T SLOT R V, MULDER F, MISSOTTEN T, BAARSMA G S, LAURENT C. FRANCIOLI, PULIT S L, DE KOVEL C G F,  DAM-VAN LOON N T, HOLLANDER A D, HET VELD P H,  HOYNG C B,  CORDERO-COMA M,  MARTÍN J, LLORENÇ V, ARYA B, THOMAS D, BAKKER S C, OPHOFF R A, ROTHOVA A, BAKKER P W D, MUTIS T, KOELEMAN B P C. A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Human Molecular Genetics, 2014, 23(22): 6081-6087.
[24]   GADALLA S E, ÖJEMALM K, VASQUEZ P L, NILSSON L, ERICSSON C, ZHAO J, NISTÉR M. EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells. Biochemical & Biophysical Research Communications, 2013, 439(2): 203-208.
[25]   JOHNSON M P, ROTEN LTDYER T D. The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Human Genetics, 2009, 126(5): 655-666.
[26]   马裴裴, 俞英, 张沅, 张勤, 王雅春, 孙东晓, 张毅. 中国荷斯坦牛SCC变化规律及其与产奶性状之间的关系. 畜牧兽医学报, 2010, 41(12): 1529-1535.
MA P P, YU Y, ZHANG Y, ZHANG Q, WANG Y C, SUN D X, ZHANG Y. The distribution of SCC and its correlation with milk production traits in Chinese Holsteins. Acta Veterinaria et Zootechnica Sinica, 2010, 41(12): 1529-1535. (in Chinese)
[27]   SANTANA M H, UTSUNOMIYA Y T, NEVES H H, GOMES R C, GARCIA J F, FUKUMASU H, SILVA S L, JUNIOR G A, ALEXANDER P A, LEME P R, BRASSALOTI R A, COUTINHO L L, LOPES T G, MEIRELLES F V, ELER J P, FERRAZ J B. Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genetics, 2014, 15(1): 1-8.
[28]   OLIVEIRA P S, CESAR A S, DO NASCIMENTO M L, CHAVES A S, TIZIOTO P C, TULLIO R R, LANNA D P, ROSA A N, SONSTEGARD T S, MOURAO G B, REECY J M, GARRICK D J, MUDADU M A, COUTINHO L L, REGITANO L C. Identification of genomic regions associated with feed efficiency in Nelore cattle. BMC Genetics, 2014, 15(1): 1-10.
[29]   DI CLEMENTE N, WILSON C, FAURE E, BOUSSIN L, CARMILLO P, TIZARD R, PICARD JY, VIGIER B, JOSSO N. Cat, Cloning, expression, and alternative splicing of the receptor for anti-Mullerian hormone. Molecular Endocrinology, 1994, 8(8): 1006-1020
[30]   BAARENDS W M, VAN HELMOND M J, POST M, VAN DER SCHOOT P J, HOOGERBRUGGE J W, DE WINTER J P, UILENBROEK J T, KARELS B, WILMING L G, MEIJERS J H. A novel member of the transmembrane serine threonine kinase receptor family is specifically expressed in the gonads and in mesenchymalcells adjacent to the mullerian duct. Development, 1994, 120(1): 189-197
[31]   李键, 乔杰, 闫丽盈, 唐荣欣, 甄秀梅. 抗苗勒氏管激素及其Ⅱ型受体的基因多态性与多囊卵巢综合征发病的关系. 中国妇产科临床杂志, 2008(03): 206-210.
LI J, QIAO J, YAN L Y, TANG R X, ZHEN X M. Relationship between polymorphism of anti-mullerian hormonr, anti-mullerian hormone receptor typeII and polycystic ovary syndrome. Chinese Journal of Clinical Obstetrics and Gynercology, (in Chinese)2008(03): 206-210.
[32]   FANG W, NIU W B, KONG H J, SUN Y P. The role of AMH and its receptor SNP in the pathogenesis of PCOS. Molecular & Cellular Endocrinology, 2017, 439: 363-368.
[33]   POOLE D H, OCON-GROVE O M, JOHNSON A L. Anti-mullerian hormone receptor Type II (AMHR2) expression and activity in Bovine Granulosa Cells. Biology of Reproduction, 2010, 82(1): 185-185.
[34]   POOLE D H, OCÓN-GROVE O M, JOHNSON A L. Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells. Theriogenology, 2016, 86(5): 1353-1360.
[35]   ILHA G F, ROVANI M T, GASPERIN B G, FERREORA R, DE MACEDO M P, NETO O A, DUGGAVATHI R, BORDIGNON V, GONCALAVES P B. Santa maria, Brazil: Regulation of anti-mullerian hormone and its receptor expression around follicle deviation in cattle. Reproduction in Domestic Animals, 2016, 51(2): 188-194.
[36]   CARTER A S, MAHBOUBI K, COSTA N N, GILLIS D J, CARTER T F, NEAL M S, MIRANDA M S, OHASHI O M , FAVETTA LA, KING W A. Systemic and local anti-mullerian hormone reflects differences in the reproduction potential of Zebu and European type cattle. Animal Reproduction Science, 2016, 167: 51-58.
[37]   ILHA G F, ROVANI M T, GASPERIN B G, FERREIRA R, DE MACEDO M P, NETO O A, DUGGAVATHI R, BORDIGNON V, GONÇALVES P B. Santa Maria, Brazil: Regulation of anti-müllerian hormone and its receptor expression around fFollicle deviation in cattle. Reproduction in Domestic Animals, 2016, 51(2): 188-194.
[38]   Abal Posada M, Doll A, Gil Moreno A, Maes TPerez C. Markers for endometrial cancer. US:US9046522, 2015.
[39]   COLAS E, PEREZ C, CABRERA S, PEDROLA N, MONGE M, CASTELLVI J, EYZAGUIRRE F, GREGORIO J, RUIZ A, LLAURADO M, RIGAU M, GARCIA M, ERTEKIN T, MONTES M, LOPEZ-LOPEZ R, CARRERAS R, XERCAVINS J, ORTEGA A, MAES T, ROSELL E, DOLL A, ABAL M, REVENTOS J, GIL- MORENO A. Molecular markers of endometrial carcinoma detected in uterine aspirates. International Journal of Cancer, 2011, 129(10): 2435-2444.
[40]   张沅, 张勤, 孙东晓. 奶牛分子育种技术研究. 北京: 中国农业大学出版社, 2012: 343-350.
ZHANG Y, ZHANG Q, SUN D X. Study on Molecular Breeding Technique of Dairy Cattle. China Agricultural University Press, 2012: 343-350. (in Chinese)
[41]   ZHAO H, PFEIFFER R, GAIL M H. Haplotype analysis in population genetic and association studies. Pharmacogenomic, 2016, 4(2): 171-178.
[42]   HAYES B J, VISSCHER P M, MCPARTLAN H C, GODDARD M E. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Research, 2003, 13(4): 635-643.
[43]   尼桂琰, 张哲, 姜力, 马裴裴, 张勤, 丁向东. 利用全基因组连锁不平衡估计中国荷斯坦牛有效群体大小. 遗传, 2012, 34(1): 50-58.
NI G Y, ZHANG Z, JIANG L, MA P P, ZHANG Q, DING X D. Chinese Holatein Cattle effective population size estimated from whole genome linkage disequilibrium. Hereditas, 2012, 34(1): 50-58. (in Chinese)
[44]   何云刚, 金力, 黄薇. 单核苷酸多态性与连锁不平衡研究进展. 基础医学与临床, 2004, 24(5): 487-490.
HE Y G, JIN L, HUANG W. Advance in the research of single nucleotide polymorphism and linkage disequilibrium. Basic & Clinical Medicine, 2004, 24(5): 487-490. (in Chinese)
[45]   何峰, 孙东晓, 俞英, 王雅春, 张沅. 荷斯坦奶牛STAT5A基因的SNPs检测及其与产奶性状的关联分析. 畜牧兽医学报, 2007, 38(4): 326-331.
HE F, SUN D X, YU Y, WANG Y C, ZHANG Y. SNPs detection of STAT5A gene and association with milk production traits in Holstein Cattle. Acta Veterinaria et Zootechnica Sinica, 2007, 38(4): 326-331. (in Chinese)
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[4] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[7] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[8] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
[9] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[10] ShuGuang LI,YongCe CAO,JianBo HE,WuBin WANG,GuangNan XING,JiaYin YANG,TuanJie ZHAO,JunYi GAI. Genetic Dissection of Protein Content in a Nested Association Mapping Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1743-1755.
[11] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[12] LIU ChenXi,WANG BinBin,PU Guang,ZHANG Qian,CAO Yang,WANG Huan,GAO Chen,NIU PeiPei,LI PingHua,HUANG RuiHua. Polymorphism of Rs319699771 Locus of Anti-Diarrhea MUC13 Gene in Suhuai Pig Population and Their Association with Economic Traits [J]. Scientia Agricultura Sinica, 2019, 52(8): 1449-1457.
[13] WEI Chen,ZHAO Junjin,HUANG XiXia,YANG HongJie,ZHANG MengHua,GE JianJun,MA GuangHui,ZHANG XiaoXue,WANG Dan,YOU ZhenChen,XU Lei,JIANG Hui,ZHAO FanFan,JU Xing,LI YunXia. Selection of Nucleus Herd for Simmental Cattle in Xinjiang Area [J]. Scientia Agricultura Sinica, 2019, 52(5): 921-929.
[14] SUN Kai, LI DongXiu, YANG Jing, DONG JiChi, YAN XianCheng, LUO LiXin, LIU YongZhu, XIAO WuMing, WANG Hui, CHEN ZhiQiang, GUO Tao. Genome-Wide Association Analysis for Rice Submergence Seedling Rate [J]. Scientia Agricultura Sinica, 2019, 52(3): 385-398.
[15] WANG HaiGang,WEN QiFen,MU ZhiXin,QIAO ZhiJun. Population Structure and Association Analysis of Main Agronomic Traits of Shanxi Core Collection in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4088-4099.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!