Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 4052-4064.doi: 10.3864/j.issn.0578-1752.2022.20.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2

XIA YuXin(),LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang()   

  1. College of Animal Science and Technology/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou 225009, Jiangsu
  • Received:2021-08-16 Accepted:2022-02-19 Online:2022-10-16 Published:2022-10-24
  • Contact: YongJiang MAO E-mail:2205395829@qq.com;cattle@yzu.edu.cn

Abstract:

【Objective】There was correlation between physiological status of different parities of cows. The objective of this research was to explore the effect of the number of subclinical mastitis (SCM) and somatic cell score (SCS) in milk of parity 1 on SCS of Holstein cows for parity 2. 【Method】This study collected 162 509 DHI records of Holstein cows with parity 1 and 2 from 2015 to 2020 in 13 farms in Jiangsu Province. Excel 2019 was used to pre-process and filter DHI records firstly. The mixed model of SAS (Ver 9.4) was used to explore the effects of farm size, sampling year, calving season, lactation month, the number of SCM on parity 1 and each average lactation stage of SCS on parity 1 on SCS of parity 2. At the same, the correlation coefficients between the number of SCM and the SCS for each lactation stage of parity 1 with SCS in each lactation month for parity 2 of Holstein cows were calculated.【Result】The farm size, sampling year, calving season, lactation month, the number of SCM on parity 1 and average SCS on parity 1 in different periods had extremely significant effects on the SCS of parity 2 (P<0.01). Among them, SCS with farm size over 5 000 was lower than other farm size (P<0.05). SCS in 2020 was higher than other sampling year (P<0.05). SCS of cows calving in summer and spring was higher than other calving season (P<0.05), while SCS of cows calving in winter was lower than other calving season (P<0.05). SCS in the 9th and 10th lactation month was higher than other lactation months (P<0.05), while SCS in the second lactation month was lower than other lactation months (P<0.05). The SCS in each lactation month of parity 2 showed downward firstly and then upward trend for the cows with the number of SCM less than 2 for parity 1. The SCS for parity 2 in each lactation month fluctuated greatly for the cow with the number of SCM with 3 or more than in parity 1. When the average lactation of SCS, early lactation of SCS, mid lactation of SCS, and late lactation of SCS for the cows in parity 1 were 0, 1, 2, and 3, respectively, the SCS for each lactation month in parity 2 showed downward firstly and then upward trend. When the average lactation of SCS for the cow in parity 1 was more than 3, the SCS in parity 2 in each lactation fluctuated greatly. Overall, the number of SCM and the SCS for each lactation stage of cows in parity 1 increased, and the SCS in each lactation month for parity 2 gradually also increased. There was an extremely significant positive correlation between the number of SCM on parity 1 and SCS on parity 2 in each lactation month (P<0.01). The correlation coefficient of average SCS in the lactation for parity 1 with the SCS in parity 2 lactation month was the maximum (0.238). The correlation coefficient of average SCS in the early lactation for parity 1 and the SCS in parity 2 in each lactation month was the minimum (0.104). Among them, the correlation coefficient of the number of SCM for parity 1 with the SCS for parity 2 in the 3rd lactation month was the maximum. The correlation coefficient of the number of SCM for parity 1 with the SCS for parity 2 in the 10th lactation month was the minimum. The correlation coefficient of average SCS in the lactation for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum. The correlation coefficient of average SCS in the lactation for parity 1 with the SCS for parity 2 in the 5th lactation month was the minimum. The correlation coefficient of early lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, however, the SCS for parity 2 in the 1st and 10th lactation month was the minimum. The correlation coefficient of mid-lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, while the SCS for parity 2 in the 1st lactation month was the minimum. The correlation coefficient of late lactation of SCS for parity 1 with the SCS for parity 2 in the 5th lactation month was the maximum, while the SCS for parity 2 in the 1st lactation month was the minimum. 【Conclusion】The number of SCM and each average lactation stage of SCS for parity 1 had extremely significant effects on SCS in lactation for the cows of parity 2. There was an extremely significant positive correlation between the numbers of SCM for parity 1 with the SCS for parity 2 in each lactation month. The results provided references for improving quality of raw milk of Holstein cows in parity 2 in the future.

Key words: subclinical mastitis (SCM), somatic cell score (SCS), Holstein cows, parity

Table 1

Effects of different factors on SCS of Holstein cows for 2nd parity"

因素 Factor 水平 Level 样本量 Sampling number SCS
牛场规模
Farm size
<1000 3324 2.94±0.03b
1000-2000 11196 2.88±0.02c
2001-5000 5477 3.36±0.03a
>5000 42272 2.24±0.01d
FF value 901.016**
PP value 0.000
采样年度
Sampling year
2011 6127 1.68±0.02g
2012 25010 2.00±0.01ce
2013 3524 2.13±0.03de
2014 789 1.90±0.07g
2015 6384 2.18±0.02ce
2016 10854 2.00±0.02f
2017 8200 2.24±0.02d
2018 38306 2.32±0.01c
2019 22702 2.67±0.01b
2020 32283 2.84±0.01a
FF value 122.972**
PP value 0.000
产犊季节
Calving season
春 Spring 15318 2.50±0.02a
夏 Summer 21568 2.69±0.01a
秋 Autumn 80915 2.31±0.01b
冬 Winter 36711 2.20±0.01c
FF value 126.494**
PP value 0.000
泌乳月
Lactation month
1 14516 2.33±0.02d
2 18459 1.94±0.01g
3 18339 2.03±0.01f
4 17032 2.13±0.01f
5 15153 2.20±0.01e
6 14310 2.32±0.01d
7 13561 2.43±0.01c
8 12602 2.56±0.02b
9 12408 2.72±0.01a
10 9340 2.86±0.02a
FF value 139.351**
PP value 0.000
头胎患SCM次数
The number of SCM on parity 1
0 122761 2.26±0.01e
1 22790 2.59±0.01d
2 5231 2.97±0.03c
≥3 1840 3.13±0.05a
FF value 6.538**
PP value 0.000
头胎泌乳期平均SCS
Average SCS in the lactation for parity 1
0 2271 1.68±0.03f
1 43190 1.96±0.01f
2 55872 2.30±0.01e
3 35725 2.66±0.01d
4 13138 2.97±0.02cd
5 3302 3.08±0.04c
≥6 722 3.84±0.08a
FF value 9.273**
PP value 0.000
头胎泌乳前期SCS
Early lactation of SCS on parity 1
0 5348 2.06±0.02e
1 29666 2.13±0.01e
2 38541 2.31±0.01de
3 25082 2.52±0.01cd
4 11897 2.73±0.02bc
5 4114 2.80±0.03bc
≥6 1689 2.95±0.05ab
FF value 4.310**
PP value 0.000
头胎泌乳中期SCS
Mid lactation of SCS on parity 1
0 8154 1.91±0.02d
1 43524 2.04±0.01cd
2 45598 2.32±0.01c
3 27959 2.59±0.01b
4 12496 2.84±0.02b
5 4573 2.95±0.03b
≥6 1320 3.31±0.06a
FF value 19.317**
PP value 0.000
头胎泌乳后期SCS
Late lactation of SCS on parity 1
0 6400 1.86±0.02e
1 40613 1.98±0.01e
2 43751 2.28±0.01d
3 32715 2.52±0.01d
4 16765 2.82±0.02c
5 6379 3.05±0.02bc
≥6 1943 3.19±0.05a
FF value 39.591**
PP value 0.000
头胎患SCM次数×2胎泌乳月
The number of SCM on parity 1×lactation month for parity 2
FF value 1.100
PP value 0.278
头胎泌乳期平均SCS×2胎泌乳月
Average lactation of SCS on parity 1×lact-ation month for parity 2
FF value 2.343**
PP value 0.000
头胎泌乳前期SCS×2胎泌乳月
Early lactation of SCS on parity 1×lactation month for parity 2
FF value 0.988
PP value 0.512
头胎泌乳中期SCS×2胎泌乳月
Midterm lactation of SCS on parity 1×lact-ation month for parity 2
FF value 2.516**
PP value 0.000
头胎泌乳后期SCS×2胎泌乳月
Late lactation of SCS on parity 1×lactation month for parity 2
FF value 7.643**
PP value 0.000

Fig. 1

The effect of the number of SCM for parity 1 on SCS in lactation month for parity 2"

Fig. 2

The effect of average SCS in the lactation for parity 1 on SCS in lactation month for parity 2"

Fig. 3

The effect of early of SCS for parity 1 on SCS in lactation month for parity 2"

Fig. 4

The effect of mid lactation of SCS for parity 1 on SCS in lactation month for parity 2"

Fig. 5

The effect of late lactation of SCS for parity 1 on SCS in lactation month for parity 2"

Fig. 6

Correlation between the number of SCM and the SCS for each lactation stage of parity 1 with SCS in each lactation month for parity 2 of Holstein cows * P≤0.05, ** P≤0.01"

Fig. 7

Correlation between the number of SCM and the SCS of each lactation stage of Holstein cows for parity 1 * P≤0.05, ** P≤0.01"

[1] 武果桃, 任杰, 牛国庆. 中药乳炎康防治奶牛隐性乳房炎的效果及安全性试验. 中国兽医杂志, 2021, 57(2): 53-57.
WU G T, REN J, NIU G Q. Prevention and treatment of recessive mastitis of dairy cow with ruyankang and safety test. Chinese Journal of Veterinary Medicine, 2021, 57(2): 53-57. (in Chinese)
[2] ROMAIN H T, ADESIYUN A A, WEBB L A, LAUCKNER F B. Study on risk factors and their association with subclinical mastitis in lactating dairy cows in Trinidad. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary Public Health, 2000, 47(4): 257-271. doi: 10.1046/j.1439-0450.2000.00349.x.
doi: 10.1046/j.1439-0450.2000.00349.x
[3] 刘康军, 曹菲菲, 孙莹慧, 李建基, 孟霞, 崔璐莹, 王亨. 奶牛乳房炎金黄色葡萄球菌的分离鉴定及毒力基因检测. 中国兽医学报, 2019, 39(2): 323-327. doi: 10.16303/j.cnki.1005-4545.2019.02.24.
doi: 10.16303/j.cnki.1005-4545.2019.02.24
LIU K J, CAO F F, SUN Y H, LI J J, MENG X, CUI L Y, WANG H. Identification and investigation on virulence determinants of Staphylococcus aureus isolated from bovine mastitis. Chinese Journal of Veterinary Science, 2019, 39(2): 323-327. doi: 10.16303/j.cnki.1005-4545.2019.02.24. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2019.02.24
[4] 郝景锋, 李静姬, 张宇航, 尹柏双, 付连军, 曾荣荣, 李东贺, 要斌, 黄岩, 李心慰, 李小兵, 赵晨旭, 刘国文. 奶牛隐性乳房炎诊断技术研究新进展. 黑龙江畜牧兽医, 2018(3): 63-65, 69. doi: 10.13881/j.cnki.hljxmsy.20171206.004.
doi: 10.13881/ j.cnki.hljxmsy
HAO J F, LI J J, ZHANG Y H, YIN B S, FU L J, ZENG R R, LI D H, YAO B, HUANG Y, LI X W, LI X B, ZHAO C X, LIU G W. New progress of research on diagnosis technology in cow recessive mastitis. Heilongjiang Animal Science and Veterinary Medicine, 2018(3): 63-65, 69. doi: 10.13881/j.cnki.hljxmsy.20171206.004. (in Chinese)
doi: 10.13881/ j.cnki.hljxmsy
[5] 梁艳, 张强, 高启松, 王海洋, 郭梦玲, 李明勋, 张慧敏, 杨章平, 陈志, 毛永江. 影响江苏地区荷斯坦牛体细胞数变化模式的非遗传因素分析. 畜牧兽医学报, 2020, 51(12): 3023-3032. doi: 10.11843/j.issn.0366-6964.2020.12.012.
doi: 10.11843/ j.issn.0366-6964.2020.12.012
LIANG Y, ZHANG Q, GAO Q S, WANG H Y, GUO M L, LI M X, ZHANG H M, YANG Z P, CHEN Z, MAO Y J. Analysis of non- genetic factors affecting SCC change pattern of Holstein cows in Jiangsu Province. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 3023-3032. doi: 10.11843/j.issn.0366-6964.2020.12.012. (in Chinese)
doi: 10.11843/ j.issn.0366-6964.2020.12.012
[6] KOESS C, HAMANN J. Detection of mastitis in the bovine mammary gland by flow cytometry at early stages. The Journal of Dairy Research, 2008, 75(2): 225-232. doi: 10.1017/S0022029908003245.
doi: 10.1017/S0022029908003245
[7] 蒋洁, 田思路, 刘晓源. 气候变化与江苏畜牧业发展的交互关系. 改革与开放, 2014(19): 62-63. doi: 10.16653/j.cnki.32-1034/f.2014.19.001.
doi: 10.16653/j.cnki.32-1034/f.2014.19. 001
JIANG J, TIAN S L, LIU X Y. Interaction between climate change and animal husbandry development in Jiangsu province. Reform & Openning, 2014(19): 62-63. doi: 10.16653/j.cnki.32-1034/f.2014.19.001. (in Chinese)
doi: 10.16653/j.cnki.32-1034/f.2014.19. 001
[8] CHEN H, WEERSINK A, KELTON D, VON MASSOW M. Estimating milk loss based on somatic cell count at the cow and herd level. Journal of Dairy Science, 2021, 104(7): 7919-7931. doi: 10.3168/jds.2020-18517.
doi: 10.3168/jds.2020-18517 pmid: 33814144
[9] 张哲, 李新圃, 杨峰, 罗金印, 刘龙海, 李宏胜. 奶牛隐性乳房炎综合防制措施的研究与应用. 中国兽医学报, 2018, 38(3): 598-601, 608. doi: 10.16303/j.cnki.1005-4545.2018.03.29.
doi: 10.16303/j.cnki.1005-4545.2018.03.29
ZHANG Z, LI X P, YANG F, LUO J Y, LIU L H, LI H S. Research and application of comprehensive control measures against sub-clinical mastitis of dairy cows. Chinese Journal of Veterinary Science, 2018, 38(3): 598-601, 608. doi: 10.16303/j.cnki.1005-4545.2018.03.29. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2018.03.29
[10] 韩丽云, 金亚东, 赵国丽, 李鹏, 史远刚. 体细胞数对牛奶品质及产量的影响. 畜牧与兽医, 2017, 49(4): 6-11.
HAN L Y, JIN Y D, ZHAO G L, LI P, SHI Y G. Effects of somatic cell count on milk quality and milk yield in dairy cows. Animal Husbandry & Veterinary Medicine, 2017, 49(4): 6-11. (in Chinese)
[11] DANIEL Z. Selection for clinical mastitis and somatic cell count. Dairy Updates, 2004, 6(13):1-6.
[12] 母童, 虎红红, 冯小芳, 顾亚玲, 田佳, 温万, 张娟, 王影. 宁夏地区荷斯坦牛乳成分及相关指标的非遗传因素、体细胞评分变化规律. 华南农业大学学报, 2021, 42(2): 34-43. doi: 10.7671/j.issn.1001-411X.202005023.
doi: 10.7671/j.issn.1001-411X.202005023
MU T, HU H H, FENG X F, GU Y L, TIAN J, WEN W, ZHANG J, WANG Y. Variation characteristics of non-genetic factors and somatic cell score for raw milk composition and related traits of Holstein in Ningxia region. Journal of South China Agricultural University, 2021, 42(2): 34-43. doi: 10.7671/j.issn.1001-411X.202005023. (in Chinese)
doi: 10.7671/j.issn.1001-411X.202005023
[13] MILUN PETROVIĆ D, BOGDANOVIĆ V, MILAN PETROVIĆ M, BOGOSAVLJEVIĆ-BOŠKOVIĆ S, ĐOKOVIĆ R, ĐEDOVIĆ R, RAKONJAC S. Effect of non-genetic factors on standard lactation milk performance traits in Simmental cows. Annals of Animal Science, 2015, 15(1): 211-220. doi: 10.2478/aoas-2014-0073.
doi: 10.2478/aoas-2014-0073
[14] 孔令旋, 雷放, 邓铭, 魏建生, 肖帆, 陈海坡, 周阳, 刘德武, 李耀坤. 胎次和热应激程度对广州地区奶牛产奶量和乳成分的影响. 畜牧与兽医, 2019, 51(1): 1-4.
KONG L X, LEI F, DENG M, WEI J S, XIAO F, CHEN H P, ZHOU Y, LIU D W, LI Y K. Effects of parity and heat stress on milk production and milk composition in dairy cows. Animal Husbandry & Veterinary Medicine, 2019, 51(1): 1-4. (in Chinese)
[15] 肖西山, 付静涛, 雷莉辉, 龙燕, 张志峰. 奶牛胎次与日产奶量和体细胞数量的关系分析. 当代畜牧, 2014(6): 42-43.
XIAO X S, FU J T, LEI L H, LONG Y, ZHANG Z F. Analysis of the relationship between milk cow parity and daily yield and somatic cells. Contemporary Animal Husbandry, 2014(6): 42-43. (in Chinese)
[16] 王若勇, 沙小飞, 毛宏伟, 辛亚平. 泌乳天数、胎次、乳成分与牛奶体细胞数关系分析. 中国牛业科学, 2018, 44(6): 27-30.
WANG R Y, SHA X F, MAO H W, XIN Y P. Relationships between the number of lactation days, parity, milk composition and milk body cells. China Cattle Science, 2018, 44(6): 27-30. (in Chinese)
[17] 毛永江, 杨章平. 南方地区中国荷斯坦牛乳中体细胞数变化规律的研究. 中国牛业科学, 2007, 33(5): 1-3. doi: 10.3969/j.issn.1001-9111.2007.05.001.
doi: 10.3969/j.issn.1001-9111.2007.05.001
MAO Y J, YANG Z P. Study on variability of somatic cell counts in the milk of Chinese Holstein cattle in South China. China Cattle Science, 2007, 33(5): 1-3. doi: 10.3969/j.issn.1001-9111.2007.05.001. (in Chinese)
doi: 10.3969/j.issn.1001-9111.2007.05.001
[18] 杨文静, 王晔, 闫青霞, 麻柱, 刘剑锋, 张胜利. 应用随机回归模型对北京地区荷斯坦牛产奶性状的遗传分析. 中国畜牧杂志, 2021, 57(6): 141-145. doi: 10.19556/j.0258-7033.20200706-07.
doi: 10.19556/j.0258-7033.20200706-07
YANG W J, WANG Y, YAN Q X, MA Z, LIU J F, ZHANG S L. Genetic analysis of milk producing traits of Holstein cattle in Beijing area by random regression model. Chinese Journal of Animal Science, 2021, 57(6): 141-145. doi: 10.19556/j.0258-7033.20200706-07. (in Chinese)
doi: 10.19556/j.0258-7033.20200706-07
[19] 张美荣, 廖想想, 陈丹, 许兆君, 毛永江, 刘坤, 陈亮, 王杏龙, 杨章平, 杨利国. 产犊季节、胎次及牛场对荷斯坦牛泌乳性能的影响. 中国牛业科学, 2012, 38(4): 6-9. doi: 10.3969/j.issn.1001-9111.2012.04.002.
doi: 10.3969/j.issn.1001-9111.2012. 04.002
ZHANG M R, LIAO X X, CHEN D, XU Z J, MAO Y J, LIU K, CHEN L, WANG X L, YANG Z P, YANG L G. The influence of different calving seasons, parity and cattle farm on reproductive performances of Holstein cow. China Cattle Science, 2012, 38(4): 6-9. doi: 10.3969/j.issn.1001-9111.2012.04.002. (in Chinese)
doi: 10.3969/j.issn.1001-9111.2012. 04.002
[20] HADRICH J C, WOLF C A, LOMBARD J, DOLAK T M. Estimating milk yield and value losses from increased somatic cell count on US dairy farms. Journal of Dairy Science, 2018, 101(4): 3588-3596. doi: 10.3168/jds.2017-13840.
doi: S0022-0302(18)30038-9 pmid: 29398029
[21] JEŽ G, OSTOJIC M, RELIĆ R. Effect of season and farm size on quality and yield of collected milk. Proceeding of Research Papers, 2011, 17:3-4.
[22] MARINS T N, GAO J, YANG Q, BINDA R M, PESSOA C M B, ORELLANA RIVAS R M, GARRICK M, MELO V H L R, CHEN Y C, BERNARD J K, GARCIA M, CHAPMAN J D, KIRK D J, TAO S. Impact of heat stress and a feed supplement on hormonal and inflammatory responses of dairy cows. Journal of Dairy Science, 2021, 104(7): 8276-8289. doi: 10.3168/jds.2021-20162.
doi: 10.3168/jds.2021-20162 pmid: 33865597
[23] RAVAGNOLO O, MISZTAL I, HOOGENBOOM G. Genetic component of heat stress in dairy cattle, development of heat index function. Journal of Dairy Science, 2000, 83(9): 2120-2125. doi: 10.3168/jds.S0022-0302(00)75094-6.
doi: 10. 3168/jds.S0022-0302(00)75094-6 pmid: 11003246
[24] 李晓锋, 索效军, 熊琪, 熊海谦, 毛丹, 杨前平, 陶虎, 陈明新. 黄冈地区某奶牛场乳体细胞数变化规律研究. 中国奶牛, 2016(8): 22-24. doi: 10.19305/j.cnki.11-3009/s.2016.08.006.
doi: 10.19305/j.cnki.11-3009/s.2016.08.006
LI X F, SUO X J, XIONG Q, XIONG H Q, MAO D, YANG Q P, TAO H, CHEN M X. Study on the variation of milk SCS in a dairy farm in Huanggang district. China Dairy Cattle, 2016(8): 22-24. doi: 10.19305/j.cnki.11-3009/s.2016.08.006. (in Chinese)
doi: 10.19305/j.cnki.11-3009/s.2016.08.006
[25] 韩佳良, 刘建新, 刘红云. 热应激对奶牛泌乳性能的影响及其机制. 中国农业科学, 2018, 51(16): 3162-3170. doi: 10.3864/j.issn.0578-1752.2018.16.012.
doi: 10.3864/j.issn.0578-1752.2018.16.012
HAN J L, LIU J X, LIU H Y. Effect of heat stress on lactation performance in dairy cows. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170. doi: 10.3864/j.issn.0578-1752.2018.16.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.16.012
[26] 郭梦玲, 王海洋, 梁艳, 李明勋, 杨章平, 毛永江. 荷斯坦牛日产奶量和体细胞评分变化原因分析. 家畜生态学报, 2020, 41(11): 42-47. doi: 10.3969/j.issn.1673-1182.2020.11.008.
doi: 10.3969/j.issn.1673-1182.2020.11.008
GUO M L, WANG H Y, LIANG Y, LI M X, YANG Z P, MAO Y J. Factors affecting the milk yield and somatic cell score of Holstein cows. Acta Ecologae Animalis Domastici, 2020, 41(11): 42-47. doi: 10.3969/j.issn.1673-1182.2020.11.008. (in Chinese)
doi: 10.3969/j.issn.1673-1182.2020.11.008
[27] OLDE RIEKERINK R G M, BARKEMA H W, STRYHN H. The effect of season on somatic cell count and the incidence of clinical mastitis. Journal of Dairy Science, 2007, 90(4): 1704-1715. doi: 10.3168/jds.2006-567.
doi: 10. 3168/jds.2006-567 pmid: 17369210
[28] 高树新, 王国富, 邵志文, 刘明玉, 马云, 吴慧光, 赵静雯. 泌乳月份及部分乳成分与牛乳中体细胞数关系的相关性研究. 中国乳品工业, 2007, 35(12): 7-9. doi: 10.3969/j.issn.1001-2230.2007.12.002.
doi: 10.3969/j.issn.1001-2230.2007.12.002
GAO S X, WANG G F, SHAO Z W, LIU M Y, MA Y, WU H G, ZHAO J W. Study on the correlation between lactation month, the portion of milk components and bovine milk somatic cell count. China Dairy Industry, 2007, 35(12): 7-9. doi: 10.3969/j.issn.1001-2230.2007.12.002. (in Chinese)
doi: 10.3969/j.issn.1001-2230.2007.12.002
[29] DINGWELL R T, KELTON D F, LESLIE K E. Management of the dry cow in control of peripartum disease and mastitis. The Veterinary Clinics of North America Food Animal Practice, 2003, 19(1): 235-265. doi: 10.1016/s0749-0720(02)00072-5.
doi: 10.1016/s0749-0720(02)00072-5
[30] SAREMI B, AL-DAWOOD A, WINAND S, MÜLLER U, PAPPRITZ J, VON SOOSTEN D, REHAGE J, DÄNICKE S, HÄUSSLER S, MIELENZ M, SAUERWEIN H. Bovine haptoglobin as an adipokine: serum concentrations and tissue expression in dairy cows receiving a conjugated linoleic acids supplement throughout lactation. Veterinary Immunology and Immunopathology, 2012, 146(3/4): 201-211. doi: 10.1016/j.vetimm.2012.03.011.
doi: 10. 1016/j.vetimm.2012.03.011
[31] SIES H. Oxidative stress: a concept in redox biology and medicine. Redox Biology, 2015, 4: 180-183. doi: 10.1016/j.redox.2015.01.002.
doi: 10.1016/j.redox.2015.01.002 pmid: 25588755
[32] 赵楠. 奶牛隐性乳房炎的病因、临床特征、诊断方法与防治. 现代畜牧科技, 2021(2): 115-116. doi: 10.19369/j.cnki.2095-9737.2021.02.061.
doi: 10.19369/j.cnki.2095-9737.2021. 02.061
ZHAO N. Cause, clinical features, diagnostic methods and prevention of dairy cow subclinical mastitis. Modern Animal Husbandry Science & Technology, 2021(2): 115-116. doi: 10.19369/j.cnki.2095-9737.2021.02.061. (in Chinese)
doi: 10.19369/j.cnki.2095-9737.2021. 02.061
[33] 范开, 孙艳争, 赵德明. 奶牛临床型乳房炎与炎区微循环障碍关系探讨. 中国兽医杂志, 2005, 41(11): 60-61. doi: 10.3969/j.issn.0529-6005.2005.11.041.
doi: 10.3969/j.issn.0529-6005.2005.11.041
FAN K, SUN Y Z, ZHAO D M. Discussion on the relationship between microcirculation dysfunction of cow clinical mastitis and inflammatory zone. Chinese Journal of Veterinary Medicine, 2005, 41(11): 60-61. doi: 10.3969/j.issn.0529-6005.2005.11.041. (in Chinese)
doi: 10.3969/j.issn.0529-6005.2005.11.041
[34] 张帆, 呙于明, 熊本海. 围产期奶牛能量负平衡营养调控研究进展. 动物营养学报, 2020, 32(7): 2966-2974. doi: 10.3969/j.issn.1006-267x.2020.07.004.
doi: 10.3969/j.issn.1006-267x.2020.07.004
ZHANG F, GUO Y M, XIONG B H. Research progress on nutritional regulation of negative energy balance in dairy cows during transition period. Chinese Journal of Animal Nutrition, 2020, 32(7): 2966-2974. doi: 10.3969/j.issn.1006-267x.2020.07.004. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2020.07.004
[35] SPEARS J W, WEISS W P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 2008, 176(1): 70-76. doi: 10.1016/j.tvjl.2007.12.015.
doi: 10.1016/j.tvjl.2007.12.015
[36] CASTILLO C, HERNANDEZ J, BRAVO A, LOPEZ-ALONSO M, PEREIRA V, BENEDITO J L. Oxidative status during late pregnancy and early lactation in dairy cows. The Veterinary Journal, 2005, 169(2): 286-292. doi: 10.1016/j.tvjl.2004.02.001.
doi: 10.1016/j.tvjl.2004.02.001
[37] 孙光野, 张翠羽, 杨威, 夏成, 张洪友, 徐闯. 围产期奶牛氧化应激初步预警体系的建立. 中国兽医学报, 2019, 39(3): 529-534, 540. doi: 10.16303/j.cnki.1005-4545.2019.03.26.
doi: 10.16303/j.cnki.1005-4545.2019.03.26
SUN G Y, ZHANG C Y, YANG W, XIA C, ZHANG H Y, XU C. Establishment of early warning system for oxidative stress in perinatal mums. Chinese Journal of Veterinary Science, 2019, 39(3): 529-534, 540. doi: 10.16303/j.cnki.1005-4545.2019.03.26. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2019.03.26
[38] 梁艳, 王海洋, 郭梦玲, 张强, 高启松, 李明勋, 张慧敏, 杨章平, 毛永江.荷斯坦牛产后前60 d患隐性乳房炎次数对各泌乳月SCS的影响. 畜牧兽医学报, 2021, 52(2): 352-363. doi: 10.11843/j.issn.0366-6964.2021.02.008.
doi: 10.11843/j. issn.0366-6964.2021.02.008
LIANG Y, WANG H Y, GUO M L, ZHANG Q, GAO Q S, LI M X, ZHANG H M, YANG Z P, MAO Y J. Effects of the number of subclinical mastitis infection during first 60 days after calving on SCS of lactation months of Holstein cows. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 352-363. doi: 10.11843/j.issn.0366-6964.2021.02.008. (in Chinese)
doi: 10.11843/j. issn.0366-6964.2021.02.008
[39] 孙玲玲, 王坤, 高胜涛, 刘士杰, 卜登攀. 短期试验条件下不同硒源对泌乳奶牛血浆和乳中硒含量及血清抗氧化能力的影响. 动物营养学报, 2018, 30(2): 589-596. doi: 10.3969/j.issn.1006-267x.2018.02.023.
doi: 10.3969/j.issn.1006-267x.2018. 02.023
SUN L L, WANG K, GAO S T, LIU S J, BU D P. Effects of different selenium sources on selenium content in plasma and milk, and serum antioxidant capacity of lactating dairy cows under short-term trial conditions. Chinese Journal of Animal Nutrition, 2018, 30(2): 589-596. doi: 10.3969/j.issn.1006-267x.2018.02.023. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2018. 02.023
[40] SALMAN S, KHOL-PARISINI A, SCHAFFT H, LAHRSSEN- WIEDERHOLT M, HULAN H W, DINSE D, ZENTEK J. The role of dietary selenium in bovine mammary gland health and immune function. Animal Health Research Reviews, 2009, 10(1): 21-34. doi: 10.1017/S1466252308001588.
doi: 10.1017/S1466252308001588 pmid: 19195425
[41] CHUNG S, ZHOU R H, WEBSTER T J. Green synthesized BSA- coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth. International Journal of Nanomedicine, 2020, 15: 115-124. doi: 10.2147/IJN.S193886.
doi: 10.2147/IJN.S193886
[42] 李万栋, 张晓卫, 冯宇哲, 崔占鸿. 微量元素硒在反刍动物中的应用研究进展. 动物营养学报, 2020, 32(4): 1499-1507.
LI W D, ZHANG X W, FENG Y Z, CUI Z H. Research advances on application of trace element selenium in ruminants. Chinese Journal of Animal Nutrition, 2020, 32(4): 1499-1507. (in Chinese)
[1] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[2] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[3] WANG Xiao, ZHANG Qin, YU Ying. Genome-Wide Association Study on Mastitis Resistance Based on Somatic Cell Scores in Chinese Holstein Cows [J]. Scientia Agricultura Sinica, 2017, 50(4): 755-763.
[4] CHEN Xiao-yong, SUN Hong-xin, DUN Wei-tao . Analysis of Reproductive Performance of Hanper Mutton Sheep [J]. Scientia Agricultura Sinica, 2015, 48(16): 3296-3302.
[5] WU Hai-Tao, CHEN Yu-Ping, ZHANG Yong-Min. The Impact of Hybrid Maize Technology Adoption on Farmers’ Livelihoods in Mountains—Evidence from Southwest Yunnan [J]. Scientia Agricultura Sinica, 2013, 46(24): 5228-5236.
[6] XIONG Ben-Hai, MA Yi, PANG Zhi-Hong, YANG Lu, YI Miao, YANG Qin. Study on Variation Characteristics of Raw Milk Composition and Curve Models of Chinese Holstein in the City of Tianjin [J]. Scientia Agricultura Sinica, 2012, 45(23): 4891-4897.
[7] WU Jian-ming,WANG Chang-fa,HE Hong-bin,HU Gui-xue,YANG Hong-jun,YANG Shao-hua,GAO Yun-dong,ZHONG Ji-feng
. Cloning and Expression of cDNA of Bovine Neutrophil β-defensin12 from Holstein Cow and Its Antibacterial Activity
[J]. Scientia Agricultura Sinica, 2010, 43(2): 396-403 .
[8] LI Chun-miao,SHI Wan-hai,CHU Ming-xing,AN Yong-fu,CHEN Hong-quan,DI Ran,FANG Li
. Polymorphisms of TLR1 Gene and Their Relationship with Somatic Cell Score in Holstein Cows
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2118-2125 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!