Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (12): 2326-2337.doi: 10.3864/j.issn.0578-1752.2017.12.013

• HORTICULTURE • Previous Articles     Next Articles

Review of Melatonin in Horticultural Crops

GONG Biao, SHI QingHua   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Environment-Controlled Agricultural Engineering, Ministry of Agriculture, Tai’an 271018, Shandong
  • Received:2016-12-12 Online:2017-06-16 Published:2017-06-16

Abstract: Melatonin is a kind of indoleamine compound that is widely existed in organism. In animal, melatonin acts as a health care product for human and plays a role in the regulation of circadian rhythm, improving immunity and anti-aging. Melatonin has been detected in a number of plant species up to now. And the biosynthesis pathway of melatonin includes L-tryptophane, tryptamine, 5-hydroxytryptamine and N-acetyl-5-hydroxytryptamine. The key enzymes involving melatonin biosynthesis have been detected in plants, including L-tryptophan decarboxylase (TrpDC), tryptophan hydroxylase (T5H), serotonin-N- acetyltransferase (SNAcT), 5-serotonin-N-acetyltransferase (AcSNMT) and hydroxyindole-O-methyltransferase (HIOMT). The roles of melatonin in the horticultural crops kingdom are not clear enough. In recent years, several studies showed that melatonin has roles in regulating the growth of plants, increasing yield, activating seed germination, regulating photoperiod, regulating rhizogenesis, delaying leaf senescence, influencing fruit ripening and storage. The antioxidant properties of melatonin would seem to explain, at least partially, its ability to fortify plants reactive oxygen species (ROS) scavenging that subjected to stresses, such as light, temperature, water, saline-alkali, heavy metal and oxidative stress. In addition, melatonin also involves some signaling transduction pathways including auxin (IAA), gibberellic acid (GA), abscisic acid (ABA), ethene (ETH), salicylic acid (SA), polyamine (PAs) and nitric oxide (NO), which form a complicated signaling network of growth, development and stress tolerance in horticultural crops. Recent data on five fields of “the biosynthesis of melatonin in plants, the melatonin of horticultural crops and influence factor for their melatonin content; roles of melatonin in growth and development of horticultural crops; roles of melatonin in stress response of horticultural crops, signal transduction network of melatonin in plant growth, development and stress tolerance” were reviewed in this paper. And the values of melatonin in horticultural industry were also forecasted. This review presented a summary of the investigations in the plant melatonin field, and the potential functions of increasing melatonin content in horticultural crops were also predicted.

Key words: melatonin, horticultural crops, growth, development, stress response

[1] LERNER A B, CASE J D, TAKAHASHI Y, LEE T H, MORI W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society, 1958, 80(10): 2587-2587.
[2] BALZER I, HARDELAND R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science, 1991, 253(5021): 795-797.
[3] ARANO M B, HEMANDEZ-RUIZ J. Melatonin in plants: more studities are necessary. Plant Signaling and Behavior, 2007, 2: 381-382.
[4] MURCH S J, KRISHNARAJ S, SAXENA P K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Reports, 2007, 19(7): 698-704.
[5] POSMYK M M, JANAS K M. Melatonin in plants. Acta Physiologiae Plantarum, 2009, 31(1): 1-11.
[6] ARNAO M B. Phytomelatonin: discovery, content, and role in plants. Advances in Botany, 2014, e815769(2).
[7] PARK W J. Melatonin as an endogenous plant regulatory signal: debates and perspectives. Journal of Pineal Research, 2011, 54(3): 143-149.
[8] TAN D X, MANCHESTER L C, LIU X, ROSALES-CORRAL S A, CASTROVIEJO D A, REITER R J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research, 2013, 54(2): 127-138.
[9] VANTASSEL D L, LI JA, ONEILL S D. Melatonin-identification of a potential dark signal in plants. Plant Physiology, 1993, 102: 117.
[10] HERNÁNDEZ-RUIZ J, AMAO M B. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. Journal of Agricultural and Food Chemistry, 2008, 56(22): 10567-10573.
[11] HERNÁNDEZ-RUIZ J, CANO A, AMAO M B. Melatonin: a growth-stimulating compound present in lupin tissues. Planta, 2004, 220(1): 140-144.
[12] BURKHARDT S, TAN D X, MANCHESTER L C, HARDELAND R, REITER R J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). Journal of Agricultural and Food Chemistry, 2001, 49(10): 4898-4902.
[13] STÜRTZ M, CEREZO A B, CANTOS-VILLAR E, GARCIA- PARRILLA M C. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chemistry, 2011, 127(3): 1329-1334.
[14] ARANO M B, HEMANDEZ-RUIZ J. Growth conditions influence the melatonin content of tomato plants. Food Chemistry, 2013, 138(2-3): 1212-1214.
[15] RIGA P, MEDINA S, GARCIA-FLORES L A, GIL-IZQUIERDO Á. Melatonin content of pepper and tomato fruits: Effects of cultivar and solar radiation. Food Chemistry, 2014, 156(4): 347-352.
[16] ZHAO Y, TAN D X, LEI Q, CHEN H, WANG L, LI Q T, GAO Y, KONG J. Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research, 2012, 55(1): 79-88.
[17] POTHINUCH P, TONGCHITPAKDEE S. Melatonin contents in mulberry (Morus spp.) leaves: Effects of sample preparation, cultivar, leaf age and tea processing. Food Chemistry, 2011, 128(2): 415-419.
[18] KORKMAZ A, DEGER O, CUCI Y. Profiling the melatonin content in organs of the pepper plant during different growth stages. Scientia Horticulturae, 2014, 172(172): 242-247.
[19] KIRAKOSYAN A, SEYMOUR E M, LLANES D E U, KAUFMAN P B, BOLLING S F. Chemical profile and antioxidant capacities of tart cherry products. Food Chemistry, 2009, 115(1): 20-25.
[20] RODRIGUEZ-NARANJO M I, GIL-IZQUIERDO A, TRONCOSO A M, CANTOS-VILLAR E, GARCIA-PARRILLA M C. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chemistry, 2011, 126(4): 1608-1613.
[21] HERNÁNDEZ-RUIZ J, CANO A, ARNAO M B. Melatonin acts as a growth-stimulating compound in some monocot species. Journal of Pineal Research, 2005, 39(2): 137-142.
[22] BYEON Y, BACK K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. Journal of Pineal Research, 2014, 56(4): 408-414.
[23] WEI W, LI Q T, CHU Y N, REITER R J, YU X M, ZHU D H, ZHANG W K, MA B, LIN Q, ZHANG J S, CHEN S Y. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2014, 66(3): 695-707.
[24] MENG J F, XU T F, SONG C Z, YU Y, HU F, ZHANG L, ZHANG Z W, XI Z M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry, 2015, 185: 127-134.
[25] ZHAO H, SU T, HUO L, WEI H, JIANG Y, XU L, MA F. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. Journal of Pineal Research, 2015, 59(2): 255-266.
[26] SARROPOULOU V, DIMASSI-THERIOU K, THERIOS I, KOUKOURIKOU-PETRIDOU M. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiology and Biochemistry, 2012, 61: 162-168.
[27] SUN Q, ZHANG N, WANG J, ZHANG H, LI D, SHI J, LI R, WEEDA S, ZHAO B, REN S, GUO Y D. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 2014, 66(3): 657-668.
[28] LEI Q, WANG L, TAN D X, ZHAO Y, ZHENG X D, CHEN H, LI Q T, ZUO B X, KONG J. Identification of genes for melatonin synthetic enzymes in ‘Red Fuji’ apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development. Journal of Pineal Research, 2013, 55(4): 443-451.
[29] GAO H, ZHANG Z K, CHAT H K, CHEN N, YANG Y, WANG D N, YANG T, CAO W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 2016, 118: 103-110.
[30] SHI H, REITER R J, TAN D X, CHAN Z. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. Journal of Pineal Research, 2015, 58(1): 26-33.
[31] ARANO M B, HERNANDEZ-RUIZ J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 2009, 46(1): 58-63.
[32] WANG P, SUN X, XIE Y, LI M, CHEN W, ZHANG S, LIANG D, MA F. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. Journal of Pineal Research, 2014, 57(3): 291-307.
[33] CHEN Q, QI W B, REITER R J, WEI W, WANG B M. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 2009, 166(3): 324-328.
[34] ZHANG N, ZHANG H J, ZHAO B, SUN Q Q, CAO Y Y, LI R, WU X X, WEEDA S, LI L, REN S, REITER R J, GUO Y D. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research, 2014, 56(1): 39-50.
[35] WEN D, GONG B, SUN S, LI S, WANG X, WEI M, YANG F, LI Y, SHI Q. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science, 2016, 7(925): 718.
[36] PELAGIO-FLORES R, MUNOZ-PARRA E, ORTIZ-CASTRO R, LOPEZ-BUCIO J. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research, 2012, 53(3): 279-288.
[37] KOLAR J, JOHNSON H J, MACHACKOVA I. Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiology Plantarum, 2003, 118(4): 605-612.
[38] BYEON Y, PARK S, KIM Y S, PARK D H, LEE S, BACK K. Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. Journal of Pineal Research, 2012, 53(1): 107-111.
[39] AFREEN F, ZOBAYED S M A, KOZAI T. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. Journal of Pineal Research, 2006, 41(2): 108-115.
[40] BYEON Y, BACK K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research, 2014, 56: 189-195.
[41] SHI H, TAN D X, REITER R J, YE T, YANG F, CHAN Z. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research, 2015, 58(3): 335-342.
[42] 徐向东, 孙艳, 郭晓芹, 孙波, 张坚. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响. 应用生态学报, 2010, 21(10): 2580-2586.
XU X D, SUN Y, GUO X Q, SUN B, ZHANG J. Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2010, 21(10): 2580-2586. (in Chinese)
[43] 徐向东, 孙艳, 孙波, 张坚, 郭晓芹. 高温胁迫下外源褪黑素对黄瓜幼苗活性氧代谢的影响. 应用生态学报, 2010, 21(5): 1295-1300.
XU X D, SUN Y, SUN B, ZHANG J, GUO X Q. Effects of exogenous melatonin on active oxygen metabolism of cucumber seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2010, 21(5): 1295-1300. (in Chinese)
[44] 赵娜, 孙艳, 王德玉, 郑俊鶱. 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响. 植物生理学报, 2012, 48(6): 557-564.
ZHAO N, SUN Y, WANG D X, ZHENG J X. Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress. Plant Physiology Journal, 2012, 48(6): 557-564. (in Chinese)
[45] LEI X Y, ZHU R Y, ZHANG G Y, DAI Y R. Attenuation of cold- induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. Journal of Pineal Research, 2004, 36(2): 126-131.
[46] POSMYK M M, BALABUSTA M, WIECZOREK M, SLIWINSKA E, JANAS K M. Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research, 2009, 46(2): 214-223.
[47] KANG K, LEE K, PARK S, KIM Y S, BACK K. Enhanced production of melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance in transgenic rice seedlings. Journal of Pineal Research, 2010, 9(2): 176-182.
[48] 高青海, 贾双双, 苗永美, 陆晓民, 李慧敏. 亚低温条件下外源褪黑素对甜瓜幼苗氮代谢及渗透调节物质的影响. 应用生态学报, 2016, 27(2): 519-524.
GAO Q H, JIA S S, MIAO Y M, LU X M, LI H M. Effects of exogenous melatonin on nitrogen metabolism and osmotic adjustment substances of melon seedlings under sub-low temperature. Chinese Journal of Applied Ecology, 2016, 27(2): 519-524. (in Chinese)
[49] BAJWA V S, SHUKLA M R, SHERIF S M, MURCH S J, SAXENA P K. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. Journal of Pineal Research, 2014, 56(3): 238-245.
[50] 邵佳蓉, 宋春波, 卞坤, 陈伟, 杨震峰. 桃果实PpSIZ1基因对低温和外源褪黑素处理的响应. 园艺学报, 2016, 43(7): 1257-1266.
SHAO J R, SONG C B, BIAN K, CHEN W, YANG Z F. Expression responses of SUMO E3 Ligase(SIZ1)to low temperature stress and exogenous melatonin in postharvest peach fruit. Acta Horticulturae Sinica, 2016, 43(7): 1257-1266. (in Chinese)
[51] FAN J, HU Z, XIE Y, CHAN Z, CHEN K, AMOMBO E, CHEN L, FU J. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Frontiers in Plant Science, 2015, 6: 925.
[52] ZHANG N, ZHAO B, ZHANG H J, WEEDA S, YANG C, YANG Z C, REN S, GUO Y D. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2013, 54(1): 15-23.
[53] WANG P, SUN X, LI C, WEI Z, LIANG D, MA F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 2013, 54(3): 292-302.
[54] ZUO B, ZHENG X, HE P, WANG L, LEI Q, FENG C, ZHOU J, LI Q, HAN Z, KONG J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. Journal of Pineal Research, 2014, 57(4): 408-417.
[55] MENG J F, XU T F, WANG Z Z, FANG Y L, XI Z M, ZHANG Z W. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research, 2014, 57(2): 200-212.
[56] GONG B, LI X, VANDENLANGENBERG K M, WEN D, SUN S, WEI M, LI Y, YANG F, SHI Q, WANG X. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnology Journal, 2014, 12(6): 694-708.
[57] LI C, WANG P, WEI Z, LIANG D, LIU C, YIN L, JIA D, FU M, MA F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 2012, 53(3): 298-306.
[58] KOSTOPULOU Z, THERIOS I, ROUMELIOTIS E, KANELLIS A K, MOLASSIOTIS A. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 2015, 86: 55-165.
[59] ZHANG H J, ZHANG N, YANG R C, WANG L, SUN Q Q, LI D B, CAO Y Y, WEEDA S, ZHAO B, REN S, GUO Y D. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2014, 57(3): 269-279.
[60] 王伟香, 张锐敏, 孙艳, 刘建龙. 外源褪黑素对硝酸盐胁迫条件下黄瓜幼苗抗氧化系统的影响. 园艺学报, 2016, 43(4): 695-703.
WANG W X, ZHANG R M, SUN Y, LIU J L. Effect of exogenous melatonin on the antioxidant system of cucumber seedlings under nitrate stress. Acta Horticulturae Sinica, 2016, 43(4): 695-703. (in Chinese)
[61] MUKHERJEE S, DAVID A, YADAV S, BALUŠKA F, BHATLA S C. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia Plantarum, 2014, 152(4): 714-728.
[62] LIU N, JIN Z, WANG S, GONG B, WEN D, WANG X, WEI M, SHI Q. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Scientia Horticulturae, 2015, 181: 18-25.
[63] LEE H Y, BYEON Y, BACK K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. Journal of Pineal Research, 2014, 57(3): 262-268.
[64] LEE H Y, BYEON Y, TAN D X, REITER R J, BACK K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. Journal of Pineal Research, 2015, 58(3): 291-299.
[65] SHI H, CHEN Y, TAN D X, REITER R J, CHAN Z, HE C. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. Journal of Pineal Research, 2015, 59(1): 102-108.
[66] ZHAO H, XU L, SU T, JIANG Y, HU L, MA F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. Journal of Pineal Research, 2015, 59(1): 109-119.
[67] YIN L, WANG P, LI M, KE X, LI C, LIANG D, WU S, MA X, LI C, ZOU Y, MA F. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. Journal of Pineal Research, 2013, 54(4): 426-434.
[68] LIU N, GONG B, JIN Z, WANG X, WEI M, YANG F, LI Y, SHI Q. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal. Journal of Plant Physiology, 2015(186/187): 68-77.
[69] GONG B, LI X, BLOSZIES S, WEN D, SUN S, WEI M, LI Y, YANG F, SHI Q, WANG X. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum. Free Radical Biology and Medicine, 2014, 71(6): 36-48.
[70] ZHANG N, SUN Q, ZHANG H, CAO Y, WEEDA S, REN S, GUO Y D. Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 2015, 66(3): 647-656.
[1] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[2] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[3] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[4] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[5] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[6] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[7] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[8] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[9] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[10] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[11] ZHANG HongCheng,HU YaJie,DAI QiGen,XING ZhiPeng,WEI HaiYan,SUN ChengMing,GAO Hui,HU Qun. Discussions on Frontiers and Directions of Scientific and Technological Innovation in China’s Field Crop Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382.
[12] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[13] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[14] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[15] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!