Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (11): 2166-2178.doi: 10.3864/j.issn.0578-1752.2017.11.021

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Response of Spatial Concordance Index Between Maize Root and Soil Nitrate Distribution to Water and Nitrogen Treatments

YIN Fei1, WANG JunZhong2, SUN XiaoMei2, LI HongQi3, FU GuoZhan1, Pei RuiJie4, JIAO NianYuan1   

  1. 1College of Agronomy, Henan University of Science and Technology, Luoyang 471023, Henan; 2Soil and Fertilizer Station of Henan Province, Zhengzhou 450002; 3Henan Association of Agricultural Science Societies, Zhengzhou 450002; 4Nanyang Vocational College of Agriculture, Nanyang 473000, Henan
  • Received:2016-08-05 Online:2017-06-01 Published:2017-06-01

Abstract: 【Objective】Root is a major organ of maize for the absorption of soil nitrogen nutrition. The spatial concordance index between maize root and soil nitrogen distribution might have an influence on nitrogen uptake and utilization of maize. The purposes of this study were: (1) to analyze the effects of water and nitrogen treatments on maize root distribution and the spatial concordance index between maize root and soil nitrate content; (2) to determine the effectiveness of spatial concordance index between maize root and soil nitrate content. 【Method】 From 2011 to 2015, the experiment was set in six treatments, including W0N0 (0), W0N1 (0+300 kg N·hm-2), W0N2 (0+360 kg N·hm-2), W1N0 (750 m3·hm-2 +0), W1N1 (750 m3·hm-2+ 300 kg N·hm-2), and W1N2 (750 m3·hm-2+ 360 kg N·hm-2), in which irrigation occurred at spike formation stage, and nitrogen applied at jointing stage (30%N) and spike formation stage (70%N). In maize growing season of 2015, soil samples were collected in and between maize planting lines at jointing, spike formation, silking, 20 days after silking, and mature stage. Root length density (RLD) and root dry weight density (RWD), soil nitrate content, spatial concordance index between root and soil nitrate content, and nitrogen absorption were analyzed. 【Result】 With the development of maize growth process, both in and between the lines of maize, RLD, RWD, and soil nitrate content increased first and then decreased. The maximum values of RLD and RWD occurred in 20 days after silking, and the maximum value of soil nitrate content occurred at spike formation stage. In the range of 0-360 kg·hm-2, with the increasing of nitrogen application rate, maize RLD and soil nitrate content before silking stage kept increasing. However, maize RWD and soil nitrate content after silking stage increased first and then decreased, and the maximum value occurred in 300 kg·hm-2 nitrogen application treatment. At the late stage of maize growth, irrigation increased RLD and RWD, but decreased soil nitrate content. With the increasing of soil layer depth, RLD1-N (the spatial concordance index between RLD and soil nitrate content at the maize planting line) and RWD1-N (the spatial concordance index between RWD and soil nitrate content at the maize planting line) showed a decreasing trend, RLD2-N and RWD2-N showed a trend of increasing first and then decreasing, the maximum value occurred in 10-30 cm soil layer. With the development of maize growth process, RLD1-N, RWD1-N, and RWD2-N , and RLD2-N in 0-40 cm soil layer showed a trend of increasing first and then decreasing. Compared with no nitrogen treatment, nitrogen applications significantly increased RLD1-N, RLD2-N, RWD1-N and RWD2-N. When increasing nitrogen from 300 kg·hm-2 to 360 kg·hm-2, the RLD2-N of 0-30 cm soil layer, the RWD1-N of 0-20 cm soil layer, the RLD1-N from jointing to silking stage, and the RWD2-N of 0-20 cm soil layer were decreased; and the RLD2-N of 40-50 cm soil layer, the RWD1-N of 20-50 cm soil layer, the RLD1-N and RWD2-N after silking stage were increased. RLD1-N, RLD2-N, RWD1-N, RWD2-N had a remarkable correlation with maize yield and nitrogen use efficiency, which the correlation coefficient was higher than between root length density, root weight density and maize yield, nitrogen use efficiency. 【Conclusion】Under field conditions, nitrogen fertilizer application increased RLD, RWD, RLD1-N, RLD2-N, RWD1-N and RWD2-N, but decreased RWD, RLD1-N before silking, RWD2-N, RLD2-N and RWD1-N when nitrogen fertilizer application exceeded 300 kg·hm-2. The spatial concordance index between root and soil nitrate can be a effective index to assess nitrogen use efficiency of maize.

Key words: maize, root length density, root dry weight density, soil nitrate content, spatial concordance index

[1]    慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态和空间分布对水分利用效率的调控. 生态学报, 2005, 25(11): 2895-2900.
Mu Z X, Zhang S Q, Hao W F, Liang A H, Liang Z S. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecologica Science, 2005, 25(11): 2895-2900. (in Chinese)
[2]    Ehdaie B, Merhaunt D J, Ahmadian S. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. Agronomy & Crop Science, 2010, 196(6): 455-466.
[3]    刘晶淼, 安顺清, 廖荣伟, 任三学, 梁宏. 玉米根系在土壤剖面中的分布研究. 中国生态农业学报, 2009, 17(3): 517-521.
Liu J M, An S Q, Liao R W, Ren S X, Liang H. Temporal variation and spatial distribution of the root system of corn in a soil profile. Chinese Journal of Eco-Agriculture, 2009, 17(3): 517-521. (in Chinese)
[4]    张礼军, 张恩和, 郭丽琢, 黄高宝. 水肥耦合对小麦/玉米系统根系分布及吸收活力的调控. 草业学报, 2005, 14(2): 102-108.
Zhang L J, Zhang E H, Guo L Z, Huang G B. Regulation of water-fertilizer coupling on root distribution and absorbing ability in Triticum aestivum-Zea mays intercrop system. Acta Prataculturae Sinica, 2005, 14(2): 102-108. (in Chinese)
[5]    漆栋良, 吴雪, 胡田田. 施氮方式对玉米根系生长、产量和氮素利用的影响. 中国农业科学, 2014, 47(14): 2804-2813.
Qi D L, Wu X, Hu T T. Effects of nitrogen supply methods on root growth, yield and nitrogen use of maize. Scientia Agricultura Sinica, 2014, 47(14): 2804-2813. (in Chinese)
[6]    宋日, 吴春胜, 赵立华, 吴桂淑. 施肥方式对玉米根系分布及产量的影响. 玉米科学, 2001, 9(4): 75-76.
Song R, Wu C S, Zhao L H, Wu G S. Effect of fertilizer application methods on root system distribution and yield in maize. Journal of Maize Sciences, 2001, 9(4): 75-76. (in Chinese)
[7]    易镇邪, 王璞, 屠乃美. 夏播玉米根系分布与含氮量对氮肥类型与施氮量的响应. 植物营养与肥料学报, 2009, 15(1): 91-98.
Yi Z X, Wang P, Tu N M. Responses of roots distribution and nitrogen content of summer maize to nitrogen fertilization types and amounts. Plant Nutrition and Fertilizer Science, 2009, 15(1): 91-98. (in Chinese)
[8]    杨俊刚, 倪小会, 徐凯, 许俊香, 曹兵, 刘宝存. 接触施用包膜控释肥对玉米产量、根系分布和土壤残留无机氮的影响. 植物营养与肥料学报, 2010, 16(4): 924-930.
Yang J G, Ni X H, Xu K, Xu J X, Cao B, Liu B C. Effects of co-situs application of polymer-coated fertilizers on grain yield, root distribution and soil residual Nmin in summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(4): 924-930. (in Chinese)
[9]    王艳, 米国华, 张福锁. 氮对不同基因型玉米根系形态变化的影响研究. 中国生态农业学报, 2003, 11(3): 69-71.
Wang Y, Mi G H, Zhang F S. Effect of nitrate levels on dynamic changes of root morphology in different maize inbred lines. Chinese Journal of Eco-Agriculture, 2003, 11(3): 69-71. (in Chinese)
[10]   王启现, 王璞, 杨相勇, 翟志席, 王秀玲, 申丽霞. 不同施氮时期对玉米根系分布及其活性的影响. 中国农业科学, 2003, 36(12): 1469-1475.
Wang Q X, Wang P, Yang X Y, Zhai Z X, Wang X L, Shen L X. Effects of nitrogen application time on root distribution and its activity in maize (Zea mays L.). Scientia Agricultura Sinica, 2003, 36(12): 1469-1475. (in Chinese)
[11]   Henning H J, Bea N, Stig M T. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. European Journal of Agronomy, 2006, 24(3): 247-256.
[12]   Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24(3): 282-290.
[13]   Mishra S, Deeds N, Ruskauff G. Global sensitivity analysis techniques for probabilistic ground water modeling. Ground Water, 2009, 47(5): 730-747.
[14]   Spalding R F, waltts D G, Schepers J S, Burbach M E, Exner M E, Poreda R J, Manin G E. Controlling nitrate leaching in irrigated agriculture. Journal of Environmental Quality, 2001, 30(4): 1184-1194.
[15]   刘瑞, 周建斌, 崔亚胜, 王天泰. 不同施氮量下夏玉米田土壤剖面硝态氮累积及其与土壤氮素平衡的关系. 西北农林科技大学学报(自然科学版), 2014, 42(2): 193-198.
Liu R, Zhou J B, Cui Y S, Wang T T. Accumulation of NO3--N in soil profile and its relationship with nitrogen balance in summer maize field with different nitrogen application rates. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(2): 193-198. (in Chinese)
[16]   茹淑华, 耿暖, 张国印, 王凌, 孙世友. 施用氮肥对太行山前平原区作物产量和土壤硝态氮残留量的影响. 华北农学报, 2015, 30(5): 161-166.
Ru S H, Geng N, Zhang G Y, Wang L, Sun S Y. Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen content in Taihang piedmont area. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 161-166. (in Chinese)
[17]   冯波, 孔令安, 张宾, 司纪升, 李升东, 王法宏. 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响. 作物学报, 2012, 38(6): 1107-1114.
Feng B, Kong L A, Zhang B, Si J S, Li S D, Wang F H. Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition. Acta Agronomica Sinica, 2012, 38(6): 1107-1114. (in Chinese)
[18]   王激清, 韩宝文, 刘社平. 施氮量和耕作方式对春玉米产量和土体硝态氮累积的影响. 干旱地区农业研究, 2011, 29(2): 129-135.
Wang J Q, Han B W, Liu S P. Effects of nitrogen application rates and soil tillage modes on yield of spring maize and NO3--N accumulation in soil profile. Agricultural Research in the Arid Areas, 2011, 29(2): 129-135. (in Chinese)
[19]   张宏, 周建斌, 王春阳, 董放, 李凤娟. 不同栽培模式及施氮对玉米-小麦轮作体系土壤肥力及硝态氮累积的影响. 中国生态农业学报, 2010, 18(4): 693-697.
Zhang H, Zhou J B, Wang C Y, Dong F, Li F J. Effect of cultivation pattern and nitrogen application rate on soil fertility and nitrate accumulation under maize-wheat rotation system. Chinese Journal of Eco-Agriculture, 2010, 18(4): 693-697. (in Chinese)
[20]   薛亮, 马忠明, 杜少平. 水氮耦合对绿洲灌区土壤硝态氮运移及甜瓜氮素吸收的影响. 植物营养与肥料学报, 2014, 20(1): 139-147
Xue L, Ma Z M, Du S P. Effect of water and nitrogen coupling on soil nitrate movement and nitrogen uptake of muskmelon. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 139-147. (in Chinese)
[21]   杜军, 杨培岭, 李云开, 任树梅, 王永忠, 李仙岳, 杜静, 张建国, 贺新. 灌溉、施肥和浅水埋深对小麦产量和硝态氮淋溶损失的影响. 农业工程学报, 2011, 27(2):57-64.
Du J, Yang P L, Li Y K, Ren S M, Wang Y Z, Li X Y, Du J, Zhang J G, He X. Influence of the irrigation, fertilization and groundwater depth on wheat yield and nitrate nitrogen leaching. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 57-64. (in Chinese)
[22]   王俊忠, 黄高宝, 张超男, 杨亚军, 赵会杰, 朱晓燕, 马培芳. 施氮量对不同肥力水平下夏玉米碳氮代谢及氮素利用率的影响. 生态学报, 2009, 29(4): 2045-2052.
Wang J Z, Huang G B, Zhang C N, Yang Y J, Zhao H J, Zhu X Y, Ma P F. Influence of nitrogen fertilizer rate on carbon-nitrogen metabolism and nitrogen use efficiency of summer maize under high and medium yield levels. Acta Ecologica Sinica, 2009, 29(4): 2045-2052. (in Chinese)
[23]   鲍士旦. 土壤农化分析(第三版). 北京:中国农业出版社, 2000: 264-268.
Bao S D. Soil and Agricultural Chemistry Analysis (3rd edition). Beijing: Chinese Agriculture Press, 2000: 264-268. (in Chinese)
[24]   李潮海, 李胜利, 王群, 侯松, 荆棘. 不同质地土壤对玉米根系生长动态的影响. 中国农业科学, 2004, 37(9): 1334-1340.
Li C H, Li S L, Wang Q, Hou S, Jing J. Effect of different textural soils on root dynamic growth in corn. Scientia Agricultura Sinica, 2004, 37(9): 1334-1340. (in Chinese)
[25]   Grant J C, Nichols J D, Yao R L, Smith R G B, Brennan P D, Vanclay J K. Depth distribution of roots of Eucalyptus dunnii and Corymbia citriodora subsp. variegata in different soil conditions. Forest Ecology and Management, 2012, 269(2): 249-258
[26]   Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant and Soil, 2003, 255(1): 157-167.
[27]   李秧秧, 刘文兆. 土壤水分与氮肥对玉米根系生长的影响. 中国生态农业学报, 2001, 9(1): 13-15.
Li Y Y, Liu W Z. Effects of soil moisture and nitrogen fertilizer on root growth of corn. Chinese Journal of Eco-Agriculture, 2001, 9(1): 13-15. (in Chinese)
[28]   武荣, 李援农. 水氮耦合对冬小麦根系分布和根冠比及产量的影响. 南方农业学报, 2013, 44(6): 963-967.
Wu R, Li Y N. Effect of water and nitrogen fertilizer coupling on root distribution, root/shoot ratio and yield of winter wheat. Journal of Southern Agriculture, 2013, 44(6): 963-967. (in Chinese)
[29]   杨蕊菊, 柴守玺, 马忠明. 施氮量对小麦/玉米带田土壤水分及硝态氮的影响. 生态学报, 2012, 32(24): 7905-7912.
Yang R J, Chai S X, Ma Z M. Dynamic changes of soil moisture and nitrate nitrogen in wheat and maize intercropping field under different nitrogen supply. Acta Ecologica Sinica, 2012, 32(24): 7905-7912. (in Chinese)
[30]   高亚军, 李生秀, 李世清, 田霄鸿, 王朝辉, 郑险峰, 杜建军. 施肥与灌水对硝态氮在土壤中残留的影响. 水土保持学报, 2005, 19(6): 61-64.
Gao Y J, Li S X, Li S Q, Tian X H, Wang Z H, Zheng X F, Du J J. Effect of fertilization and irrigation on residual nitrate N in soil. Journal of Soil and Water Conservation, 2005, 19(6): 61-64. (in Chinese)
[31]   栗丽, 洪坚平, 王宏庭, 谢英荷, 张璐, 邓树元, 单杰, 李云刚. 施氮与灌水对夏玉米土壤硝态氮积累、氮素平衡及其利用率的影响. 植物营养与肥料学报, 2010, 16(6): 1358-1365.
Li L, Hong J P, Wang H T, Xie Y H, Zhang L, Deng S Y, Shan J, Li Y G. Effects of nitrogen application and irrigation on soil nitrate accumulation, nitrogen balance and use deficiency in summer maize. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1358-1365. (in Chinese)
[32]   Liang B M, Sharp R E, Baskin T I. Regulation of growth anisotropy in well-watered and water-stressed maize roots. I. Spatial distribution of longitudinal, radial, and tangential expansion rates. Plant Physiology, 1997, 115(1): 101-111.
[33]   杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1): 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese)
[34]   杨荣, 苏永中. 水氮配合对绿洲沙地农田玉米产量-土壤硝态氮和氮平衡的影响. 生态学报, 2003, 29(30): 1459-1469.
Yang R, Su Y Z. Effects of nitrogen fertilization and irrigation rate on grain yield, nitrate accumulation and nitrogen balance on sandy farmland in the marginal oasis in middle of Heihe River Basin. Acta Ecologica Science, 2003, 29(30): 1459-1469. (in Chinese)
[35]   Dai J, Wang Z H, Li M H, He G, Li Q, Cao H B, Wang S, Gao Y J, Hui X L. Winter wheat grain yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China. Field Crops Research, 2016, 196: 180-190.
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[6] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[7] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[8] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[9] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[10] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[11] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[12] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[13] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[14] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
[15] WANG JiangHao, WANG LiWei, ZHANG DongMin, GUO Rui, ZHANG QuanGuo, LI XingHua, WEI JianFeng, SONG Wei, WANG BaoQiang, LI RongGai. Molecular Marker Assisted Identification and Application of Maize Germplasms for Maize Rough Dwarf Disease Resistance [J]. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!