Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (11): 1960-1972.doi: 10.3864/j.issn.0578-1752.2017.11.002

;

Previous Articles     Next Articles

Changes of Maize Planting Density in China

MING Bo, XIE RuiZhi, HOU Peng, LI LuLu, WANG KeRu, LI ShaoKun   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
  • Received:2017-03-01 Online:2017-06-01 Published:2017-06-01

Abstract: 【Objective】Enhancing the maize plant population has undergone a constant evolution over the years, with the purpose of increasing the crop yield. However, the rational density range was determined by environmental condition, varieties and management. The objective of this work was to reveal the approach of enhancing maize yield in the future by analyzing the change trend of planting density and its influencing factors in major producing regions. 【Method】 The research data have been obtained over the Project of Sending Agricultural Technology into Farmers’ Homes and National Maize Industrial Technology System from 2005 to 2016, including 23 provinces, more than 267 counties. From this investigation, 117 960 farmer production investigation data samples were obtained from the Northern China spring maize planting region (NM), the Northwest China maize planting region (NWM), the Huang-Huai-Hai Plain summer maize planting region (HPM), the Southwest China maize planting region(SM) and the Southern China sweet-waxy maize planting region (SWM). The number of harvested plants surveyed in nationwide investigation was used to analyze the planting density of maize main producing region and different ecological regions. The sample data were verified and complemented by averaging the values of 5 neighboring points. According to the regional environmental condition and planting patterns, the main maize producing regions have divided into 25 typical ecological regions. Boxplot analysis and Tukey’s honestly significant difference (HSD) test method were used to compare the planting density difference and its significance in different regions. Evolutionary trends of county-scale planting density in different ecological regions were subjected to the fitting linear model to analyze inter-annual trend of planting density and its significance.【Result】The results showed that there were significant differences of planting densities in different regions. At present (2014-2016), the planting density of the main producing region respectively were 6.77×104, 6.19×104, 5.91×104, 5.13×104 and 4.80×104 plants/hm2 in NWM, HPM, NM, SWM and SM. The planting density in NWM was significantly higher (P<0.01) than other regions. Furthermore, planting density in SWM and SM was significantly lower (P<0.01) than that in NWM, HPM and NM. From 2005 to 2016, the inter-annual variability of planting density showed a significant increase in NM. In NWM and SM, the planting density kept it steady between 2009 and 2016. The planting density in HPM increased obviously from 2005 to 2009 and remained stable after 2009. Planting density in SWM showed a significant decreasing trend.【Conclusion】Dense planting cultivation is commonly acknowledged by both the government and the academic researchers. However, the planting density evolution in the main production regions and different ecological regions is not uniform. Regional environmental condition is the key factor for determining the planting density, and reasonable cultivation techniques and appropriate density-resistant varieties are effective approaches to overcome environmental constraints and increase planting density. Consequently, further analysis of the promotion and restriction increase planting density factors, including environmental condition, varieties and management, will provide a theoretical foundation for establishing regional dense planting management mode.

Key words: maize, main producing region, planting density, variation trend

[1]    陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立 春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38(1): 80-85.
CHEN G P, GAO J L, ZHAO M, DONG S T, LI S K, YANG Q F, LIU Y H, WANG L C, XUE J Q, LIU J G, LI C H, WANG Y H, WANG Y D, SONG H X, ZHAO J R. Distribution, yield structure, and key cultural techniques of maize super-high yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)
[2]    李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009, 42(6): 1941-1951.
LI S K, WANG C T. Evolution and development of maize production techniques in China. Scientia Agricultura Sinica, 2009, 42(6): 1941-1951. (in Chinese)
[3]    李少昆, 王崇桃. 玉米生产技术创新·扩散. 北京: 科学出版社, 2010.
LI S K, WANG C T. Innovation and Diffusion of Corn Production Technology. Beijing: Science Press, 2010. (in Chinese)
[4]    Assefa Y, Vara Prasad P, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti I. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Science, 2016, 56(5): 2802-2817.
[5]    Brekke B, Edwards J, Knapp A. Selection and adaptation to high plant density in the Iowa Stiff Stalk Synthetic maize (Zea mays L.) population. Crop Science, 2011, 51(5): 1965-1967.
[6]    李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华. 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016(4): 1-6.
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016(4): 1-6. (in Chinese)
[7]    Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50(3):193-202.
[8]    Mansfield B D, Mumm R H. Survey of plant density tolerance in U.S. maize germplasm. Crop Science, 2014, 54(1): 157-173.
[9]    赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军. 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告. 作物杂志, 2011(2): 1-3.
ZHAO M, LI S K, DONG S T, ZHANG D X, WANG P, XUE J Q, GAO J L, SUN S M, ZHANG J W, LIU P, LIU Y H, WANG Y J. The key technology of American maize production and the development of modern maize production in China: A study report. Crops, 2011(2): 1-3. (in Chinese)
[10]   National Corn Yield Contest[2017-03-01]. http://www.ncga.com/ for-farmers/national-corn-yield-contest
[11]   赵松岭, 李凤民, 张大勇, 段舜山. 作物生产是一个种群过程. 生态学报, 1997, 17(1): 100-104.
ZHAO S L, LI F M, ZHANG D Y, DUAN S S. Crop production is a population process. Acta Ecologica Sinica, 1997, 17(1): 100-104. (in Chinese)
[12]   李少昆, 王崇桃. 我国玉米产量变化及增产因素分析. 玉米科学, 2008, 16(4): 26-30.
LI S K, WANG C T. Analysis on change of production and factors promoting yield increase of corn in China. Journal of Maize Sciences, 2008, 16(4): 26-30. (in Chinese)
[13]   戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1-5.
DAI J R, E L Z. Scientific and technological innovation of maize breeding in China. Journal of Maize Sciences, 2010, 18(1): 1-5. (in Chinese)
[14]   杨锦忠, 张洪生, 杜金哲. 玉米产量-密度关系年代演化趋势的Meta分析. 作物学报, 2013, 39(3): 515-519.
YANG J Z, ZHANG H S, DU J Z. Meta-analysis of evolution trend from 1950s to 2000s in the relationship between crop yield and plant density in maize. Acta Agronomica Sinica, 2013, 39(3): 515-519. (in Chinese)
[15]   张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 遮荫对夏玉米产量及生长发育的影响. 应用生态学报, 2006, 17(4):657-662.
ZHANG J W, DONG S T, WANG K J, HU C H, LIU P. Effects of shading on the growth, development and grain yield of summer maize. Chinese Journal of Applied Ecology, 2006, 17(4): 657-662. (in Chinese)
[16]   Sarlangue T, Andrade F H, Calviño P A, Purcell L C. Why do maize hybrids respond differently to variations in plant density? Agronomy Journal, 2007, 99(4): 984-991.
[17]   NIU X, XIE R, LIU X, ZHANG F, LI S, ZHAO S. Maize yield gains in Northeast China in the last six decades. Journal of Integrative Agriculture, 2013, 12(4): 630-637.
[18]   李少昆, 王崇桃. 玉米高产潜力·途径. 北京: 科学出版社, 2010.
LI S K, WANG C T. Potential and Ways to High Yield in Maize. Beijing: Science Press, 2010. (in Chinese)
[19]   薛吉全, 马国胜, 路海东, 崔鸣, 李运方, 刘厚群. 密度对不同类型玉米源库关系及产量的调控. 西北植物学报, 2001, 21(6): 1162-1168.
XUE J Q, MA G S, LU H D, CUI M, LI Y F, LIU H Q. The regulation and control of density on relationship of sink-source and yield of different maize. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(6): 1162-1168. (in Chinese)
[20]   勾玲, 黄建军, 孙锐, 丁在松, 董志强, 赵明. 玉米不同耐密植品种茎秆穿刺强度的变化特征. 农业工程学报, 2010, 26(11):156-162.
GOU L, HUANG J J, SUN R, DING Z S, DONG Z Q, ZHAO M. Variation characteristic of stalk penetration strength of maize with different density-tolerance varieties. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 156-162. (in Chinese)
[21]   杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬峰. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7): 1226-1233.
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010, 36(7): 1226-1233. (in Chinese)
[22]   吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
LÜ L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)
[23]   莫惠栋. 种植密度和作物产量—产量和密度的数量关系及其分析(续). 扬州大学学报(农业与生命科学版), 1980, 6(3): 147-160.
MO H D. Planting density and crop yield-an analysis of quantitive relationships between yield and density. Journal of Yangzhou University (Agricultural and Life Science Edition), 1980, 6(3): 147-160. ( in Chinese)
[24]   Testa G, Reyneri A, Blandino M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. European Journal of Agronomy, 2016, 72: 28-37.
[25]   Li J, Xie R Z, Wang K R, MING B, GUO Y Q, ZHANG G Q, LI S Q. Variations in maize dry matter, harvest index, and grain yield with plant density. Agronomy Journal, 2015, 107(3):829-834.
[26]   王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000 kg·hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. ( in Chinese)
[27]   刘伟, 吕鹏, 苏凯, 杨今胜, 张吉旺, 董树亭, 刘鹏, 孙庆泉. 种植密度对夏玉米产量和源库特性的影响. 应用生态学报, 2010, 21(7): 1737-1743.
LIU W, LÜ P, SU K, YANG J S, ZHANG J W, DONG S T, LIU P, SUN Q Q. Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chinese Journal of Applied Ecology, 2010, 21(7): 1737-1743. (in Chinese)
[28]   陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7):1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[29]   钱春荣, 于洋, 宫秀杰, 姜宇博, 赵杨, 王俊河, 杨忠良, 张卫建. 黑龙江省不同年代玉米杂交种产量对种植密度和施氮水平的响应. 作物学报, 2012, 38(10): 1864-1874.
QIAN C R, YU Y, GONG X J, JIANG Y B, ZHAO Y, WANG J H, YANG Z L, ZHANG W J. Response of grain yield to plant density and nitrogen application rate for maize hybrids released from different eras in Heilongjiang province. Acta Agronomica Sinica, 2012, 38(10): 1864-1874. ( in Chinese)
[30]   袁继超, 柯永培, 朱庆森, 段必康, 杨世民. 攀西地区玉米群体密度效应研究. 西南农业学报, 2004, 17(1): 26-30.
YUAN J C, KE Y P, ZHU Q S, DUAN B K, YANG S M. Effects of density on growth and yield of maize in Panxi region. Southwest China Journal of Agricultural Sciences, 2004, 17(1): 26-30. ( in Chinese)
[31]   段必康, 柯永培, 杨世民, 袁继超, 谢冰, 石海春. 攀西地区玉米产量构成特点及高产途径探讨. 西南农业学报, 2007, 20(4): 620-624.
DUAN B K, KE Y P, YANG S M, YUAN J C, XIE B, SHI H C. Analyses of yield components and high yielding approaches of maize in Panxi region. Southwest China Journal of Agricultural Sciences, 2007, 20(4): 620-624. (in Chinese)
[32]   国家统计局年度数据查询[2017-03-01]. http://www.stats.gov.cn/ tjsj/zxfb/201612/ t20161208_1439012.html
National Bureau of Statistics of the People's Republic of China: National Data[2017-03-01]. http://www.stats.gov.cn/tjsj/zxfb/201612/ t20161208_1439012.html
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[13] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
[14] WANG JiangHao, WANG LiWei, ZHANG DongMin, GUO Rui, ZHANG QuanGuo, LI XingHua, WEI JianFeng, SONG Wei, WANG BaoQiang, LI RongGai. Molecular Marker Assisted Identification and Application of Maize Germplasms for Maize Rough Dwarf Disease Resistance [J]. Scientia Agricultura Sinica, 2023, 56(10): 1838-1847.
[15] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!