Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (10): 1873-1884.doi: 10.3864/j.issn.0578-1752.2017.10.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Isolation and Purification of Polysaccharide from Fermented Apple Pomace and Its Relationship with Processing Characteristics

JIA Feng, GUO YuRong, YANG Xi, LIU Dong, LI Jie   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2016-08-29 Online:2017-05-16 Published:2017-05-16

Abstract: 【Objective】On the basis of dynamic trend of separating and purifying of fermented apple pomace polysaccharides, the authors further investigated the structural properties , and in hoping of further elucidating the separating, purifying, bioactivity and processing properties of fermented apple pomace polysaccharides.【Method】Apple pomace polysaccharides (AP), wine fermented apple pomace polysaccharides (WFP) and vinegar fermented apple pomace polysaccharides (VFP) were used as experimental materials. On the basis of analysis of polysaccharides content, the authors used DEAE-52 cellulose column, NaCl as eluent, to separate polysaccharides according to the polarity difference among polysaccharides components. Through collecting effluent liquid using fraction collector and then the polysaccharides content was determined using with phenol sulfuric acid method, and the elution curve was depicted. Meanwhile, the obtained polysaccharides components with DEAE-52 cellulose column were further separated using Sephadex G-200 gel column, distilled water as eluent. After obtaining the separated polysaccharides components, the structural properties were thoroughly analyzed by using X-ray powder diffraction to observe the crystallographic structure, Thermogravimetric Analyzer was used to analyze thermogravimetric characteristics, Laser particle size analyzer to analyze granularity, and Congo red was used to explore triple helix structure of polysaccharides. Finally, Desktop Scanning Electron Microscope was also used to observe and analyze micro-structure of apple pomace polysaccharides.【Result】The content of original apple pomace polysaccharides was approximately 70%. Because the polysaccharides didn’t include protein and nucleic acid, so the extraction efficiency was excellent. NAP0.1 and NAP0.2 were obtained after AP were purified firstly through DEAE-52 cellulose column and 0.1, 0.2 mol·L-1 NaCl were respectively used as eluents and then through Sephadex G-200 gel column and distilled water as eluent. Meanwhile, NWFP0, NWFP0.1 and NWFP0.2 were obtained after WFP was purified with DEAE-52 cellulose column and subsequently Sephadex G-200 gel column. After VFP was separated, NVFP0, NVFP0.1 and NVFP0.2 were obtained, too. All the separated constituents included over 92% polysaccharides, suggesting separation effect was satisfactory. Three polysaccharides, AP, WFP and VFP, were non-crystalline material between before and after separation. Concentration temperature of polysaccharides was strictly limited below 65℃, and the processing temperature was below 150℃. Before separation, AP, WFP and VFP all had triple helix structure. After separation, triple helix structure still existed in NWFP0, NVFP0, and NVFP0.1, while NAP0.1 and NAP0.2 had no triple helix structure. Compared with the original apple pomace polysaccharides, the separated apple pomace polysaccharides had better stability and smaller particle size, because lower dispersion coefficient of particle size was observed. Besides, flake structure in polysaccharides was less, and cross-linking effect attenuated after separation, which is beneficial for development of polysaccharides bioactivity.【Conclusion】Fermented apple pomace included over 70% polysaccharides, and polysaccharides content was up to 92% after crude polysaccharides was separated and purified. Besides, according to XRD, TG, LPSA and Congo red as well as DSEM analysis, it was concluded that the changes of solubility, viscosity and physical characteristics facilitated separated apple pomace polysaccharides developing bioactivity and processing characteristics.

Key words: fermentation, apple pomace, polysaccharides, separation and purification, structure Characterization, processing characteristics

[1]    孙阳. 结肠炎癌变过程中MUC1粘蛋白的变化及苹果多糖对MUC1的影响[D]. 西安: 陕西中医学院, 2013.
Sun Y. Changes of MUC1 mucin during the colitis carcinogenesis and influence of apple polysaccharide on MUC1 Mucin [D]. Xi’an: College of Shaanxi Chinese Medcine, 2013. (in Chinese)
[2]    付成程, 郭玉蓉, 刘艳芳, 李景景, 李冰, 符恒. 苹果多糖的制备方法及防癌功能研究进展. 农产品加工·学刊, 2012(2): 100-102.
FU C C, GUO Y R, LIU Y F, LI J J, LI B, FU H. Apple polysaccharides preparation methods and the research progress of cancer prevention function. Academic Periodical of FarmProducts Processing , 2012(2):100-102. (in Chinese)
[3]    马文杰, 郭玉蓉, 魏决. 应用二次回归旋转正交组合设计提取水溶性苹果多糖的工艺研究. 食品科学, 2009, 30(20): 105-108.
Ma W J, GUO Y R, WEI J. Optimization of water-soluble apple polysaccharides extraction using quadratic orthogonal combination design. Food Science, 2009, 30(20): 105-108. (in Chinese)
[4]    苏钰琦, 马惠玲, 罗耀红, 左莹. 苹果多糖提取的优化工艺研究. 食品工业科技, 2008(5): 198-201.
SU Y Q, MA H L, LUO Y H, ZUO Y. Optimization of extraction process of maluspumila polysaccharides from apple pomace. Journal of Food Industry Science and Technology, 2008(5): 198-201. (in Chinese)
[5]    张丽萍, 盛义保, 马惠玲, 左莹. 苹果多糖除杂脱色工艺的筛选. 西北林学院学报, 2007, 22(1): 141-144.
ZHANG L P, SHENG Y B, MA H L, ZUO Y. Deprotein and depigment of maluspumila polysaccharides from apple pomace. Northwest Forestry University, 2007, 22(1): 141-144. (in Chinese)
[6]    李锦运, 郭玉蓉, 董守利, 段亮亮, 仇农学, 牛鹏飞. 冷破碎苹果皮渣中多糖提取工艺优化及除杂方法研究. 食品工业科技, 2011, 32(7): 274-277.
Li J Y, GUO Y R, DONG S L, DUAN L L, QIU N X, NIU P F. Study on optimization of extraction process and deprotein,depigment of polysaccharides from apple cold-break peel pomace. Food Science and Technology, 2011, 32(7): 274-277. (in Chinese).
[7]    李倩, 郭振军, 李宇华, 伍焕杰, 孙阳, 邓雅婷, 张敏, 刘莉. HPLC 检测肠灌流模型中 PMP 衍生化葡寡糖含量的方法学建立. 现代生物医学进展, 2010, 22(12): 2201-2204.
Li Q, GUO Z J, LI Y H, WU H J, SUN Y, DENG Y T, ZHANG M, LIU L. HPLC detection of intestinal perfusion model PMP derivatizedglucosamine oligosaccharide content established methodology. Progress in Modern Biomedicine, 2010, 22(12): 2201-2204.(in Chinese)
[8]    杨素. 苹果中多糖和黄酮类化合物肝损伤保护作用的药理活性研究[D]. 西安: 陕西师范大学, 2013.
YANG S. Pharmacological activities of polysaccharides and apple flavonoids liver injury in rats [D]. Xi’an: Shaanxi Normal University, 2013. (in Chinese)
[9]    张典, 王粉侠, 弥曼, 孙阳, 李宇华, 樊磊, 刘莉, 梅其炳. 苹果多糖预防小鼠结肠炎癌变的作用及其机制研究. 中国药学杂志, 2015, 50(17): 1527-1531.
ZHANG D, WANG F X, MI M, Sun Y, Li Y H, Fan L, Liu L, Mei Q B. Prevention of apple polysaccharide colitis carcinogenesis in mice and its mechanism. Chinese Pharmaceutical Journal, 2015, 50(17): 1527-1531. (in Chinese)
[10]   李洁, 郭玉蓉, 窦姣. 4种方法提取苹果肉渣果胶的流变学特性研究. 食品工业科技, 2015, 36(12): 109-112.
Li J, GUO Y R, DOU J. Rheological properties of apple flesh pomace pectins extracted by four methods. Journal of Food Industry Science and Technology, 2015, 36(12): 109-112. (in Chinese)
[11]   LIU L, LI Y H, NIU Y B, SUN Y, GUO Z J, LI Q, LI C, FENG J, GAO S S, MEI Q B. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis, 2010, 31(10): 1822-1832.
[12]   LI Y, NIU Y, WU H, SUN Y, LI Q, KONG X, LIU L, MEI Q. Modified apple polysaccharides could induce apoptosis in colorectal cancer cells. Journal of Food Science, 2010, 75(8): 224-229.
[13]   LI Y H, MEI L, NIU Y B, SUN Y, HUA H T, LI Q. Low molecular weight apple polysaccharides induced cell cycle arrest in colorectal tumor. Nutrition & Cancer, 2012, 64(3): 439-463.
[14]   LI Y, LIU L, NIU Y, FENG J, SUN Y, KONG X, CHEN Y, GAN H, GAO S, MEI Q. Modified apple polysaccharide prevents against tumorigenesis in a mouse model of colitis-associated colon cancer: Role of galectin-3 and apoptosis in cancer prevention. European Journal of Nutrition, 2011, 51(1): 107-117.
[15]   YANG X, SU Y, GUO Y, JIAO Y, ZHAO Y. Compositional characterisation of soluble apple polysaccharides, and their antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice. Food Chemistry, 2013, 138(2/3): 1256-1264.
[16]   ZHANG D, SUN Y, YUE Z, LI Q, MENG J, LIU J, HE K X, JIANG F, MI M, LIU L, MEI Q. Apple polysaccharides induce apoptosis in colorectal cancer cells. International Journal of Molecular Medicine, 2012, 30(1): 100-106.
[17]   QIAN L, ZHOU S, JING J,YANG T H, DUAN S Y, WANG Z F, MEI Q B, LIU L. Oligosaccharide from apple induces apoptosis and cell cycle arrest in HT29 human colon cancer cells. International Journal of Biological Macromolecules, 2013, 57(6): 245-254.
[18]   DOU J, MENG Y H, LIU L, LI J,REN D Y,GUO Y R. Purification, characterization and antioxidant activities of polysaccharides from thinned-young apple. International Journal of Biological Macromolecules, 2015, 72: 31-40.
[19]   LI J, GUO Y R, LI Z, LIN Y M, LIU L, ZHANG X R, DENG H. Supercritical carbon dioxide and hexane extraction of wax from apple peel pomace: Content, composition and thermal properties. Separation Science & Technology, 2015, 50(14): 335-336.
[20]   WANG X, LÜ X. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydrate Polymers, 2014, 102(1): 174-184.
[21]   NG J K T, ZUJOVIC Z D, SMITH B G. Solid-state 13 C NMR study of the mobility of polysaccharides in the cell walls of two apple cultivars of different firmness. Carbohydrate Research, 2014, 386: 1-6.
[22]   GALVEZ-LOPEZ D, LAURENS F, QUEMENER B. Variability of cell wall polysaccharides composition and hemicellulose enzymatic profile in an apple progeny. International Journal of Biological Macromolecules, 2011, 49(5): 1104-1109.
[23]   窦姣. 苹果疏除幼果多糖的分离纯化、药理活性及结构表征[D]. 西安: 陕西师范大学, 2015.
DOU J. Isolation and Purification of young apple polysaccharides and its pharmacological activity and structural characterization [D]. Xi’an: Shaanxi Normal University, 2015. (in Chinese)
[24]   王小梅. 超声对麦冬多糖结构、溶液行为及生物活性影响的研究[D]. 西安: 陕西师范大学, 2013.
WANG X M. Effect on polysaccharides structure, behavior and biological activity of the solution with ultrasound [D]. Xi’an: Shaanxi Normal University, 2013. (in Chinese)
[25]   马青, 商鸿生. 小麦高温抗锈品种与条锈菌互作的超微结构研究. 中国农业科学, 2002, 35(8): 939-942.
MA Q, SHANG H S. Ultrastructural changes concerning interact ion of rust-resistant wheat cultivars in high-temperature with sripe rust. Scientia Agricultura Sinica, 2002, 35(8): 939-942. (in Chinese)
[26]   梁涛, 张静, 张力妮, 张化朋, 张鹏, 刘阿娟. 碱提杏鲍菇多糖PEAP-1的结构初探及形貌观察. 食品与生物技术学报, 2013, 32(9): 951-956.
LIANG T, ZHANG J, ZHANG L N, ZHANG H P, ZHANG P, LIU A J. Preliminary structure analysis and structure morphology observation of alkali-extractable polysaccharide PEAP-1 from Pleurotus eryngii. Journal of Food and Biological Technology, 2013, 32(9): 951-956. (in Chinese)
[27]   张化朋, 张静, 南征. 杏鲍菇多糖WPP2的结构表征及抗肿瘤活性. 高等学校化学学报, 2013, 34(10): 2327-2333.
ZHANG H P, ZHANG J, NAN Z. Structure characterization and antitumor activity of polysaccharide WPP2 from Pleurotus eryngii. Journal of High School Chemistry, 2013, 34(10): 2327-2333. (in Chinese)
[28]   吕峰. 我国薏苡仁资源主要品质及薏苡仁活性多糖的研究[D]. 福州: 福建农林大学, 2008.
LÜ F. Study on the quality and biological activity of Yiyiren polysaccharide in China [D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. (in Chinese)
[29]   JEDDOU K B, CHAARI F, MAKTOU F S. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chemistry, 2016, 205: 97-105.
[30]   JEDDOU K B, CHAARI M S. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chemistry, 2016, 205: 97-105.

[31]   王辑. 产胞外多糖植物乳杆菌的分离筛选、分子表征及其应用研究[D]. 长春: 吉林大学, 2015.
WANG J. Study on Lactobacillus isolation and molecular characterization and application of exopolysaccharides [D].Changchun: Jilin University, 2015. (in Chinese)
[32]   杨焱, 李巧珍, 吴迪, 周帅, 唐传红, 刘艳芳. 猴头菌子实体发育过程中多糖结构和活性的变化. 菌物研究, 2013(2): 147-147.
YANG Y, LI Q Z, WU D, ZHOU S, TANG C H, LIU Y F. Changes in the structure and activity of the polysaccharides during the development of fruiting bodies Hericium. Fungal Research, 2013(2): 147-147. (in Chinese)
[33]   牛庆凤, 王斌, 李涛, 金鑫, 陈荫. 假酸浆籽胶质多糖的结构及凝胶特性研究. 现代食品科技, 2015(9): 68-73, 123.
NIU Q F, WANG B, LI T, JIN X, CHEN Y. Structure and gelling properties of false physalis seed gum polysaccharides . Modern Food Science and Technology, 2015(9): 68-73, 123. (in Chinese)
[34]   贾丰, 郭玉蓉, 刘冬, 杨曦, 邓红, 孟永宏. 发酵对苹果渣多糖加工特性的影响. 中国农业科学, 2016, 49(19): 3831-3844.
JIA F, GUO Y R, LIU D, YANG X, DENG H, MENG Y H. Effect of fermentation on the polysaccharides processing characteristics in apple pomace . Scientia Agricultura Sinica,2016, 49(19): 3831-3844. (in Chinese)
[35]   王兆梅, 李琳, 郭祀远, 蔡妙颜. 活性多糖构效关系研究评述. 现代化工, 2002, 22(8): 18-21.
WANG Z M, LI L, GUO S Y, CAI M Y. Review of polysaccharides structure-activity relationship study. Modern Chemical Industry, 2002, 22(8): 18-21. (in Chinese)
[36]   王晓娟, 魏传晚, 徐淑永, 吕梅香, 曾和平. 生物活性多糖结构与功效关系的研究进展. 广州化工, 2004, 32(1): 6-10.
WANG X J, WEI C W, XU S Y, LÜ M X, ZENG H P. Progress in Polysaccharides Chemical Structure and Structure-activity. Guangzhou Chemical Industry, 2004, 32(1): 6-10. (in Chinese)
[37]   戴伟, 刘新义, 胡雄彬, 廖德华, 向大雄. 香菇多糖的分子量和结构与生物活性之间的关系. 中南药学, 2012, 10(6): 453-456.
DAI W, LIU X Y, HU X B, LIAO D H, XIANG D X. The relationship of molecular, structure and biological activity of mushrooms polysaccharides. Central South Pharmacy, 2012, 10(6): 453-456. (in Chinese)
[1] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[2] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[3] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[4] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[5] NUERHATI·Silafuer ,WUSIMAN·Yimiti . Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage [J]. Scientia Agricultura Sinica, 2022, 55(20): 4065-4074.
[6] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[7] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[8] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[9] WEI QiHang,FENG Yao,MA QianQian,LI YanLi,LIU YuanWang,LI ZhaoJun,REN YanFang. Application Effect of Fungi Promoting Secondary Fermentation in Composting [J]. Scientia Agricultura Sinica, 2021, 54(24): 5240-5250.
[10] LI Yu,WANG Fang,WENG ZeBin,SONG HaiZhao,SHEN XinChun. Preparation of Soybean Protein-Derived Pro-osteogenic Peptides via Enzymatic Hydrolysis [J]. Scientia Agricultura Sinica, 2021, 54(13): 2885-2894.
[11] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[12] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[13] ZHAN JiCheng,CAO MengZhu,YOU YiLin,HUANG WeiDong. Research Advance on the Application of Non-Saccharomyces in Winemaking [J]. Scientia Agricultura Sinica, 2020, 53(19): 4057-4069.
[14] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
[15] YAN Sha,XING JieWen,WANG XiaoWen. Effects of Different Strain Fermentation on Protein Hydrolysis and Lipid Profile of Quinoa [J]. Scientia Agricultura Sinica, 2020, 53(10): 2045-2054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!