Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (7): 1282-1293.doi: 10.3864/j.issn.0578-1752.2017.07.011

• HORTICULTURE • Previous Articles     Next Articles

The QTL Analysis of Fruit and Seed Associated Traits in Watermelon Based on CAPS Markers

CHI YingYing, GAO Peng, ZHU ZiCheng, LUAN FeiShi, LI GuiYing, YU Peng   

  1. Horticulture College, Northeast Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Harbin 150030
  • Received:2016-08-22 Online:2017-04-01 Published:2017-04-01

Abstract: 【Objective】 Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). The aim of this study is to convert SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon for linkage map construction and quantitative trait locus (QTL). 【Method】 A genetic map was constructed using a BC1P1 segregating population consists of 225 individuals, which F1 was obtained to backcross with P1 from female parent (garden female parent) and male parent (PI186490). The center and edge brix, center and edge flesh firmness, 100-seed-weight and seed coat color were investigated, respectively, then the obtained data were analyzed by SPSS19. Two inbred lines which are female and male parents, were re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. It was found that 90% and 88% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. With the published genome as a reference, the obtained data were assembled with BWA, and explored for the SNP by SAMTOOLS. The sequence of the SNP loci was extracted by in house perl script and then input into SNP2CAPS to transform into CAPS markers. The 450 CAPS restriction sites were selected evenly on the markers whole-genome. CAPS primers were designed 100-500 bp around the mutation by Primer Premier 6.Screening polymorphic CAPS markers for each plant within 225 BC1P1 populations were genotyped. Finally QTL analysis of fruit and seed associated traits in watermelon was done by using QTL IciMapping and Windows QTL CartographerV2.5 softwares. 【Result】 A total of 751 532 SNPs were detected, 450 pairs of CAPS were designed with 7 restriction enzymes among which 200 pairs of primers were polymorphic. An initial CAPS-based genetic linkage map was constructed with the BC1P1 population which spanned 1 376.95 cM with 11 linkage groups, 15 QTLs were detected and the rate of contribution explained 5.25%-74.59%. Among the additive loci there were 3 loci for center brix (CTSS2.1, CTSS2.2, CTSS8.1), 1 for edge brix (ETSS2.1), 3 for center flesh firmness (CFF6.1, CFF6.2, CFF8.1), 2 for edge flesh firmness (EFF6.1, EFF6.2), 4 for seed coat color (SCC8.1, SCC8.2, SCC8.3, SCC8.4), and 2 for 100-seed-weight (SHW6.1, SHW9.1). 【Conclusion】 A total of 751 532 SNPs were detected. Phenotypic contribution rate of 15% or more has five QTL (CTSS8.1, SCC8.1, SCC8.2, SCC8.3, SCC8.4) which are center brix and seed coat color. The research will provide a scientific basis for further fine positioning and cloning the genes controlling superior traits of fruit in watermelon.

Key words: watermelon, genetic linkage map, SNP, CAPS, QTL

[1]    HASHIZUME T, SHIMAMOTO I, HIRAI M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (thunb.)Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theoretical and Applied Genetics, 2003, 106(5): 779-785.
[2]    Kole C, Abbott A G. Principles and practices of plant genomics, Volume1: genome mapping. Principles & Practices of Plant Genomics,2008(1): 131.
[3]    Levi A, Thies J A, Wechter W P, Harrison H F, Simmons A M, Reddy U K. High frequency oligonucleotides: targeting active gene markers revealed wide genetic diversity among citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genetic Resources & Crop Evolution, 2013, 60(2): 427-440.
[4]    Pirona R, Eduardo I, Pacheco I, Linge C D S, Miculan M, Verde I, TARTARINI S, DONDINI L, PEA G, BASSI D, ROSSINI L. Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMA Plant Biology, 2013, 13(166): 1-13.
[5]    SANDLIN K, PROTHRO J, HEESACKER A, KHALILIAN N, OKASHAH R, XIANG W. Comparative mapping in watermelon [Citrullus lanatus (thunb.)] matsum. et naka. Theoretical & Applied Genetics, 2012,125(8): 1603-1618.
[6]    刘传奇, 高鹏, 栾非时. 西瓜遗传图谱构建及果实相关性状QTL分析. 中国农业科学, 2014, 47(14): 2814-2829.
Liu C Q, Gao P, Luan F S. Construction of a genetic linkage map and QTL analysis of fruit associated traits in watermelon. Scientia Agriculttura Sinica, 2014, 47(14): 2814-2829. (in Chinese)
[7]    PATERSON A, DAMON S, HEWITT J, ZAMIR D, RABINOWITCH H, LINCOLN S. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127(1): 181-197.
[8]    HASNIZUME T, SHIMAMOTO I, HARUSHIMA Y. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica, 1996, 90(3): 265-273.
[9]    REN Y, MCGREGOR C, ZHANG Y, GONG G, ZHANG H, GUO S. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus ). BMC Plant Biology, 2014, 14(1): 33.
[10]   CHENG Y, LUAN F S, WANG X Z. Construction of a genetic linkage map of watermelon ( Citrullus lanatus ) using CAPS and SSR markers and QTL analysis for fruit quality traits. Scientia Horticulturae, 2016, 202: 25-31.
[11]   MAVI K. The relationship between seed coat color and seed quality in watermelon Crimson sweet. Horticultural Science, 2010, 37(2): 168-172.
[12]   MCKAY J W. Factor interaction in citrullus. Japanese Journal of Crop Science, 1937, 9: 131-132.
[13]   尚建立, 吕品, 王吉明, 马双武. 西瓜果实主要性状的遗传及相关性分析. 华北农学报, 2015(S1): 87-91.
SHANG J L, LÜ P, WANG J M, MA S W. Genetic and correlation analysis of watermelon main fruit characters. Acta Agriculturae Boreali-sinica, 2015(S1): 87-91. (in Chinese)
[14]   LUAN F, DELANNAY I, STAUB J E. Chinese melon (Cucumis melo L) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica, 2008, 164(2): 445-461.
[15]   GUO S, ZHANG J, SUN H, SALSE J, LUCAS W J, ZHANG H. The draft genome of watermelon (citrullus lanatus) and resequencing of 20 diverse accessions.Nature Genetics, 2013, 45(1): 51-58.
[16]   GANAL M W, ALTMANN T. RODER M S. SNP identification in crop plants. Current Opinion in Plant Biology, 2009, 12(2): 211-217.
[17]   张成才, 王丽鸳, 韦康, 成浩. 基于茶树EST-SNP的CAPS标记开发. 分子植物育种, 2013(6): 817-824. 
ZHANG C C, WANG L Y, WEI K, CHENG H. Conversion of EST-SNP into CAPS markers in tea plant (Camellia sinensis). Molecular Plant Breeding,2013(6): 817-824. (in Chinese)
[18]   POOTAKHAM W, CHANPRASERT J, JOMCHAI N, SANGSRAKRU D, YOOCHA T, THERAWATTANASUK K. Single nucleotide polymorphism marker development in the rubber tree, hevea brasiliensis (euphorbiaceae). American Journal of Botany, 2011, 98(11): 337-378.
[19]   束永俊, 李勇, 吴娜拉胡, 柏锡, 才华, 纪巍. 大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发. 作物学报, 2010, 36(4): 574-579.
SHU Y J, LI Y, WU N L H, BAI X, CAI H, JI W. Mining and identification of SNP from EST sequences and convertion of CAPS markers in soybean. Acta Agronomica Sinica,2010, 36(4): 574-579. (in Chinese)
[20]   INITIATIVE A G. Analysis of the genome sequence of the flowering plant arabidopsis thaliana. Nature, 2000, 408(6814): 796-815.
[21]   KITASHIBA H, LI F, HIRAKAWA H, KAWANABE T, ZOU Z, HASEGAWA Y. Draft sequences of the radish (Raphanus sativus.) genome. Dna Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 2014, 21(5): 481-490.
[22]   李斯更, 沈镝, 刘博, 邱杨, 张晓辉, 张忠华. 基于黄瓜基因组重测序的Indel标记开发及其应用. 植物遗传资源学报, 2013, 14(2): 278-283.
LI S G, SHEN D, LIU B, QIU Y, ZHANG X H, ZHANG Z H. Development and application of cucumber InDel markers based on genome re-sequencing. Journal of Plant Genetic Resources,2013, 14(2): 278-283. (in Chinese)
[23]   HIRAKAWA H, SHIRASAWA K, MIYATAKE K, NUNOME T, NEGORO S, OHYAMA A. Draft genome sequence of eggplant (solanum melongena l.): the representative solanum species indigenous to the old world. Dna Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 2014, 21(6): 649-660.
[24]   GUO S, ZHANG J, SUN H, SALSE J, LUCAS W J, ZHANG H. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45(1): 51-58.
[25]   ZHENG Y M. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44(1): 32-39.
[26]   JIAO Y, ZHAO H, REN L, SONG W, ZENG B, GUO J. Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2014, 46(9): 1039-1040.
[27]   LIN T, ZHU G, ZHANG J, XU X, YU Q, ZHENG Z. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46(11): 1220-1226.
[28]   王春明, 安井秀, 吉村醇, 苏昌潮, 翟虎渠, 万建民. 水稻叶蝉抗性基因回交转育和CAPS标记辅助选择. 中国农业科学,2003, 36(3): 237-241.
WANG C M, AN J X, JI C C, SU C C, ZHAI H Q, Wan J M. Green rice leafhopper resistance gene transferring through backcrossing and CAPS marker assisted selection. Scientia Agriculture Sinica, 2003, 36(3): 237-241. (in Chinese)
[29]   郭绍贵, 许勇, 张海英, 宫国义. 不同环境条件下西瓜果实可溶性固形物含量的QTL分析. 分子植物育种, 2006, 4(3): 393-398.
GUO S G, XU Y, ZHHANG H Y, GONG G Y. QTL Analysis of soluble solids content in watermelon under different environments. Molecular Plant Breedingm,2006, 4(3): 393-398. (in Chinese)
[30]   DIENER A C. Routine mapping of fusarium wilt resistance in BC1, populations of arabidopsis thaliana. BMC Plant Biology, 2013, 13(1): 1-13.
[31]   李晨, 孙传清, 穆平, 陈亮, 王象坤. 栽培稻与普通野生稻BC1群体分子连锁图的构建和株高的QTL分析.中国农业大学学报, 2001, 6(5): 19-24.
LI C, SUN C Q, MU P, CHEN L, WANG X K. Genetic linkage map constructed by using a BC1 population and QTL analysis of plant height for common wild rice and cultivated rice. Journal of China Agricultural University, 2001, 6(5): 19-24. (in Chinese)
[32]   单娟, 崔良国, 韩志景, 都森烈, 曹冰, 李翠兰. 基于温热BC1群体的农艺性状QTL定位. 玉米科学, 2013(3): 24-29.
SHAN J, CUI L G, HAN Z J, DU S L, CAO B, LI C L. Detection of quantitative trait loci for agronomic characters of temperate-tropical maize BC 1 population. Journal of Maize Sciences, 2013(3): 24-29. (in Chinese)
[33]   LIU S, GAO P, ZHU Q, LUAN F, DAVIS A R, WANG X. Development of cleaved amplified polymorphic sequence markers and a caps-based genetic linkage map in watermelon (Citrullus lanatus [thunb.] matsum. And nakai) constructed using whole-genome re-sequencing data. Breeding Science, 2016, 66(2): 244-259.
[34]   霍建勇, 刘静, 冯辉. 鲜食粉果番茄可溶性固形物含量及遗传分析. 沈阳农业大学学报, 2005, 36(2): 152-154.
HUO J Y, LIU J, FENG H. Content and hereditary snalysis on soluble solids of fresh pink tomato. Journal of Shenyang Agricultural University, 2005, 36(2): 152-154. (in Chinese)
[35]   林碧英, 高山, 林峰. 甜瓜可溶性固形物含量的遗传表现与基因效应分析. 中国瓜菜, 2007(1): 4-6.
LIN B Y, GAO S, LIN F. Analysis of genetic effects for soluble solids content in melon. China Cucurbits and Vegetables,2007(1): 4-6. (in Chinese)
[36]   胡新军, 韩小霞, 粟建文, 袁祖华, 李勇奇. 中国南瓜可溶性固形物含量的主基因+多基因遗传分析. 中国农学通报, 2015(10): 69-73.
HU X J, HAN X X, SU J W, YUAN Z H, LI Y Q. Genetic analysis of soluble solid content in cucurbita moschata using mixed major gene plus polygene inheritance model. Chinese Agricultural Science Bulletin, 2015(10): 69-73.(in Chinese)
[37]   SOUZAF M D D, MARCOS F. The seed coat as a modulator of seed-environment relationships in fabaceae. Brazilian Journal of Botany, 2001, 24(4): 365-375.
[38]   ABDULLAH W D, POWELL A A, Matthews S. Association of differences in seed vigour in long bean (Vigna sesquipedalis) with testa colour and imbibition damage. Journal of Agricultural Science, 1991, 116(2): 389-396.
[39]   ZHANG H, MIAO H, WEI L, LI C, ZHAO R, WANG C. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L). Plos One, 2013, 8(5): e63898.
[40]   陈璐璐. 黄瓜种子长度的遗传分析及分子标记. 中国农学通报, 2012, 28(16): 165-170.
CHEN L L. Molecular marker and genetic analysis of cucumber seed length. Chinese Agricultural Science Bulletin, 2012, 28(16): 165-170. (in Chinese)
[41]   周慧文, 卢丙洋, 马鸿艳, 高鹏, 栾非时, 高启帆. 西瓜种子大小形状相关QTL分析. 园艺学报, 2016, 43(4): 715-723.
ZHOU H W, LU B Y, MA H Y, GAO P, LUAN F S, GAO Q F. QTL mapping of watermelon seed traits. Acta Horticulturae Sinica, 2016, 43(4): 715-723. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[3] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[6] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[7] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[8] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[11] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[12] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[13] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[14] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[15] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!