Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1139-1146.doi: 10.3864/j.issn.0578-1752.2017.06.014

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Effect of EDN3 on of Sheep Skin Melanocytes with Different Coat Colors in Vitro

LI YaNan, ZHAO BingLing, WANG HaiDong, CHEN TianZhi, LIU Ying, CHANG LuCheng, DONG ChangSheng   

  1. College of Animal Science and Veterinary Medicine, Taigu 030801, Shanxi
  • Received:2016-03-01 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】 The objective of this study is to explore the effects of EDN3 in vitro on sheep melanocytes with different coat colors and to find the mechanisms of production of melanin and their differences. 【Method】 Melanocytes from black and white coat colors were cultured in vitro, and MTT assay was used to detect different cell proliferation rates by affected EDN3. After extraction of total RNA and total protein of both cells, the total RNA was reversely transcribed to cDNA, and then the effect of EDN3 on mRNA relative expression of EDNRB, NRas and TYR was analyzed by RT-PCR, and Western blot was performed to ensure whether EDN3 had influence on the protein expression of EDNRB, NRas and TYR. Significant difference was analyzed by using statistical method with software SPSS19.0. 【Result】 MTT assay showed that EDN3 promoted cells proliferation from both black and white coat colors. RT-PCR revealed that compared with the control group, the relative expressions of EDNRB and NRas mRMA in EDN3 group from white coat color were significantly increased by 1.7992 folds and 1.8536 folds respectively (P<0.01), while TRY mRNA had no significant difference. In cells from black coat color, the expressions of EDNRB, NRas and TYR were all induced significantly with multiples of 2.2512, 1.3859 and 15.5710 respectively (P<0.01). The result of Western blot in EDN3 group was consistent with RT-PCR, the EDNRB protein expression from white coat color was 3.0827 times of control group (P<0.01), and the NRas protein expression was 1.2936 fold of control group (P<0.05), while TYR had no change. The protein expressions in cells from black coat color of EDNRB, NRas and TYR were observably added up to 3.9800 time (P<0.01), 1.3658 and 1.8498 times (P<0.05), respectively. 【Conclusion】 EDN3 promoted melanocytes proliferation from both black and white coat colors, while had no effect on TYR which is a rate-limiting enzyme of pigment synthesis in cells from white coat colors, and might play a role in producing melanin in cells isolated from black coat color.

Key words: EDN3, sheep, coat color, melanocytes

[1]    INOUE A, YANAGISAWA M, KIMURA S, KIMURA S, KASUYA Y, GOTO Y, MASAKI T. The human enothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86 (8):2863-2867.
[2]    SALDANA-CABOVERDE A, KOS L. Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell & Melanoma Research, 2010, 23(2):160-170.
[3]    IMOKAWA G, YADA Y, MIYAGISHI M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. Journal of Biological Chemistry, 1992, 267(34): 24675-24680.
[4]    KEDZIERSKI R M, YANAGISAWA M. Endothelin system: the double-edged sword in health and disease. Annual Review of Pharmacology & Toxicology, 2001, 41(1): 851-876.
[5]    LIN J Y, FISHER D E. Melanocyte biology and skin pigmentation. Nature, 2007, 445(7130): 843-850.
[6]    KINOSHITA K, AKIYAMA T, MIZUTANI M, SHINOMIYA A, ISHIKAWA A, YOUNIS H H, TSUDZUKI M, NAMIKAWA T, MATSUDA Y. Endothelin receptor B2 (EDNRB2) is responsible   for the tyrosinase-independent recessive white (mo(w)) and mottled (mo) plumage phenotypes in the chicken. PLoS One, 2014, 9(1): e86361-e86361.
[7]    AOKI H, MOTOHASHI T N, YAMAZAKI H, et al. Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development. Developmental Dynamics, 2005, 233(2):407-417.
[8]    FANG D, LEISHEAR K, NGUYEN T K, FINKO R, CAI K, FUKUNAGA M, LI L, BRAFFORD P A, KUIP A N, XU X, SMALLEYS K S, HERLYN M. Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells, 2006, 24(7): 1668-1677.
[9]    耿建军, 白俊明, 范瑞文, 杨姗姗, 庞亚妙, 董常生. 内皮素-3对羊驼黑色素细胞特征及细胞内毛色基因表达的影响. 畜牧兽医学报, 2013, 44(7): 1070-1077.
GENG J J, BAI J M, FAN R W, YANG S S, PANG Y M, DONG C S, The effect of endothelin-3 on the melanocyte characteristic and expression of hair color genes in melanocytes from alpaca (Lama Pacos) in vitro. Acta Veterinaria et Zootechnica Sinica, 2013, 44(7): 1070-1077.(in Chinese)
[10]   HIROBE T. How are proliferation and differentiation of melanocytes regulated?. Pigment Cell & Melanoma Research, 2011, 24(3): 462-478.
[11]   REGAZZETTI C, DE DONATIS G M, GHORBEL H H, CARDOT- LECCIA N, AMBROSETTI D, BAHADORAN P, CHIQNON- SICARD B, LACOUR JP, BALLOTTI R, MAHNS A, PASSERON T. Endothelial cells promote pigmentation through endothelin receptor B activation. Journal of Investigative Dermatology, 2015, 135(12): 3096-3104.
[12]   VON KOSCHEMBAHR A M, SWOPE V B, STARNER R J, ABDEL-MALEK Z A. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signalling pathways. Experimental Dermatology, 2015, 24(4): 269-274.
[13]   SKOVSTED GF, KILIC S, EDVINSSON L. Endothelin-1 and endothelin-3 regulate endothelin receptor expression in rat coronary arteries. Basic & Clinical Pharmacology & Toxicology, 2015, 117(5):297-305.
[14]   李亚楠, 赵兵令, 马淑慧, 赫晓燕, 范瑞文, 王海东, 耿建军, 董常生. 内皮素3在不同毛色绵羊皮肤的表达与定位.畜牧兽医学报, 2015, 46(12):2322-2328.
LI Y N, ZHAO B L, MA S H, HE X Y, FAN R W, WANG H D, GENG J J, DONG C S. EDN3 expression and localization in sheep skin with different coat color. Acta Veterinaria et Zootechnica Sinica, 2015, 46(12): 2322-2328. (in Chinese)
[15]   MOSMANN T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 1983, 65(s 1–2):55-63.
[16]   秦以龙, 董常生, 庞亚妙, 崔玉琮, 赵园园, 耿建军. 内皮素-2(ET-2)促进体外培养的绵羊皮肤黑色素细胞增殖及黑色素生成. 中国生物化学与分子生物学报, 2015, 31(11): 1199-1205.
QIN Y L, DONG C S, PANG Y M, CUI Y C, ZHAO Y Y,GENG J J. Endothelin-2 (ET-2) promotes cultured ovine skin melanocytes proliferation and melanin synthesis in vitro. Chinese Journal of Biochemistry and Molecular Biology, 2015, 31(11): 1199-1205.(in Chinese)
[17]   REID K,TURNLEY AM, MAXWELL GD, KURIHARA H, BARTLETT PF, MURPHY M. Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development, 1996, 122: 3911-3919.
[18]   KAELIN C B, XU X, HONG LZ, DAVID V A, MCGOWAN K A, SCHMIDT-KUNTZEL A, ROELKE M E, PINO J, PONTIUS J, COOPER G M, MANUEL H, SWANSON W F, MARKER L, HARPER CK, VAN DYK A, YUE B, MULLIKIN JC, WARREN WC,EIZIRIK E, O’BRIEN SJ, BARSH GS, MENOTTI-RAYMOND M. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science, 2012,337(6101): 1536-1541.
[19]   BARNES K J, SPENCER N J. Can colonic migrating motor complexes occur in mice lacking the endothelin-3 gene?. Clinical & Experimental Pharmacology & Physiology, 2015, 42(5): 485-495.
[20]   ARAI H, HORI S, ARAMORI I,  OHKUBO H NAKANISHI S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature, 1990, 348(6303):730-732.
[21]   SAKURAI T, YANAGISAWA M, TAKUWA Y,; MIYAZAKI H, KIMURA S, GOTO K, MASAKI T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature, 1990, 348(6303):732-735.
[22]   BENADUCE A P, BATISTA D, GRILO G, JORGE K, CARDERO D, MILIKOWSKI C, KOS L. Novel UV-induced melanoma mouse model dependent on Endothelin3 signaling. Pigment Cell & Melanoma Research, 2014, 27(5):839–842.
[23]   耿建军, 孙乐天, 穆晓丽, 张杰, 姜俊兵, 张映, 李宏全, 董常生. 内皮素受体在不同毛色绵羊皮肤中的表达和定位分析. 中国农业科学, 2010, 43(24): 5147-5154.
GENG J J, SUN L T, MU X L, ZHANG J, JIANG J B, ZHANG Y, LI H Q, DONG C S. Immunolocalization and expression analysis of endothelin receptor in sheep skin of different hair color. Scientia Agricultura Sinica, 2010, 43(24): 5147-5154.(in Chinese)
[24]   GARCIA RJ, ITTAH A, MIRABAL S, FIQUEROA J, LOPEZ L, GLICK AB, KOS L. Endothelin 3 induces skin pigmentation in a keratin-driven inducible mouse model. Journal of Investigative Dermatology, 2008, 128(1): 131-142.
[25]   SATO-JIN K, NISHIMURA E K, AKASAKA E, HUBER W, NAKANO H, MILLER A, DU J, WU M, HANADA K, SAWAMURA D, FISHER D E, IMOKAWA G. Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2008, 22(4):1155-1168.
[26]   KAWA Y, ITO M, ONO H, ASANO M, TAKANO N, OOKA S, WATABE H, HOSAKA E, BABA T, KUBOTA Y, MIZOGUCHI M. Stem cell factor and/or endothelin-3 dependent immortal melanoblast and melanocyte populations derived from mouse neural crest cells. Pigment Cell Research, 2000, 13 (Supplement s8): 73-80.
[27]   THOMAS A J, ERICKSON C A. The making of a melanocyte: the speci?cation of melanoblasts from the neural crest. Pigment Cell & Melanoma Research, 2008, 21(6): 598-610.
[28]   ABDLE-MALEK Z, SWOPE VB, SUZULI I, AKCALI C, HARRIGER M D, BOYCE S T, URABE K, HEARING V J. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proceedings of the National Academy of Sciences, 1995, 92(5): 1789-1793.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[9] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[10] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[11] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[12] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[13] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[14] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[15] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!