Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3113-3123.doi: 10.3864/j.issn.0578-1752.2021.14.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep

WANG JiQing(),HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin   

  1. College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology/Gansu Engineering Lab of Genetic Improvement in Ruminants, Gansu Agricultural University, Lanzhou 730070
  • Received:2020-11-13 Accepted:2020-02-04 Online:2021-07-16 Published:2021-07-26

Abstract:

【Objective】Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs with >200 nt in length, which have been shown to regulate mammary gland development and lactation process in dairy cows and dairy goats. However, little is known about the effect of lncRNAs on milk traits in sheep. The aim of the study was to analyze the effect of lncRNAs on milk performance and then provided a theoretical basis for elucidating molecular mechanism of lactation performance in sheep.【Method】Three high-lactating yield and high-milk-fat-content Small-Tailed Han sheep and three low-lactating yield and low-milk-fat-content Small-Tailed Han sheep were selected to profile the expression of lncRNAs in the mammary gland tissues during lactation using RNA-Seq. The enrichment analysis was performed using GO and KEGG databases for the target genes of differentially expressed lncRNAs between the two groups. The expression levels of 16 differentially expressed lncRNAs were verified using reverse transcription-quantitative PCR (RT-qPCR).【Result】A total of 7 239 expressed lncRNAs were identified in the mammary gland tissues of Small-Tailed Han sheep, including 2 262 known lncRNAs and 4 977 novel lncRNAs. The most of lncRNAs were expressed at low levels. The 120 differentially expressed lncRNAs were found between the two groups of Small-Tailed Han sheep, of which 68 lncRNAs were up-regulated in high-lactating performance Small-Tailed Han sheep, while 52 lncRNAs were down-regulated. The target genes of differentially expressed lncRNAs were significantly enriched in sulfur compound metabolic process, thioester biosynthesis process, acyl-CoA biosynthetic process, Rap1 signal pathway and adhesion junction. The lncRNA- miRNA network showed that some target miRNAs of the six most differentially expressed lncRNAs including MSTRG.125242.6 and MSTRG.59580.8, play important roles in mammary gland development and lactation in domestic animals. The RT-qPCR results showed that the expression tendency of 16 lncRNAs was consistent with the RNA-Seq results, which confirmed the accuracy and authenticity of the RNA-Seq data.【Conclusion】The differentially expressed lncRNAs screened were involved in the regulation of mammary gland development and milk performance in sheep and the results will provide a theoretical basis for analyzing the molecular genetic mechanism of lactation performance in sheep.

Key words: sheep, mammary gland, long non-coding RNA (lncRNA), lactation period

Table 1

The primers information for RT-qPCR"

引物名称 Name 正向序列(5'→3') Forward sequence (5'→3') 反向序列(5'→3') Reverse sequence (5'→3')
MSTRG.59580.8 ACCAGGTTGCCTAAGGAGGC TGGAGTACAGTGGCTATTCACAA
MSTRG.59580.9 ACCAGGTTGCCTAAGGAGG TGGAGTACAGTGGCTATTCACA
MSTRG.59580.10 TCGGGTGTCCGCACTAAG GTTGCCCAGGCTGGAGTA
MSTRG.38680.1 GGTCTGCCTTCTTGGGTTC TGGAGATGGAGCAGGGATC
MSTRG.47064.1 GCCGACTAAGGTCCATCT GGCACTCAGCCTTCTTCA
MSTRG.137650.1 GTGCCGAAGAATAGATGC TTCCTCCAAAGAAATCCC
MSTRG.59580.12 ACCAGGTTGCCTAAGGAGG TGGAGTACAGTGGCTATTCACA
MSTRG.80056.21 CACTTCACTTAGCACGAT CAACAGATAAATGGACGA
MSTRG.125242.6 GCACGAACAGCGACATCAG CAGGGTCTCAGCAAGTTAGGAG
MSTRG.119809.14 TGTAGTCCTTTCCCAGTT TGAATACCAGACCACCTTA
MSTRG.59580.14 GGCTGGAGGATCGCTTGA TTGACCTGCTCCGTTTCC
MSTRG.59580.11 CAGCCTGGGCAACATAGC CCGAACTTAGTGCGGACAC
MSTRG.114625.4 TGATCGCCAGGGTTGATT GGATGGTCGTCCTCTTCG
MSTRG.59580.3 ACCAGGTTGCCTAAGGAGG TGGAGTACAGTGGCTATTCACA
MSTRG.106261.2 TGTCACCCTCCACCAATG CAGGCTGAAGTCCCAAAA
rna-XR_003586216.1 TACACGGTATTTCCTCCAA CCAATTCTAAGATGCGATT
GAPDH ATCTCGCTCCTGGAAGATG TCGGAGTGAACGGATTCG

Fig. 1

The predicted novel lncRNAs in the mammary gland tissues of Small-Tailed Han sheep (A) and the venn diagram of lncRNAs expression in the two groups of Small-Tailed Han ewe (B) ‘HM’ and ‘LM’ represent the mammary gland tissues from high-lactating performance and low-lactating performance Small-tailed Han sheep, respectively. The same as below"

Fig. 2

The statistical distribution of expression levels of lncRNAs in the mammary gland of Small-Tailed Han sheep (A) and volcano plot of the differentially expressed lncRNAs (B) The red and green dots indicate upregulated and downregulated lncRNAs in high-lactating performance Small-Tailed Han sheep, respectively. The black dots indicate the lncRNAs that had no significantly difference in the two groups (P>0.05) "

Fig. 3

The GO enrichment results of the target genes of differentially expressed lncRNAs"

Fig. 4

The KEGG analysis of the target genes of differentially expressed lncRNAs"

Fig. 5

The network of lncRNA-miRNA The red and green triangles indicate up-regulated and down-regulated lncRNAs in mammary gland tissues of high-lactating performance Small-Tailed Han sheep, respectively"

Fig. 6

The RT-qPCR verification of 16 differentially expressed lncRNAs"

[1] 中国畜禽遗传资源志: 羊志. 第一版. 北京: 中国农业出版社, 2011: 62-63.
Animal Genetic Resources in China: Sheep and Goats. First edition. Beijing: China Agriculture Press, 2011: 62-63. (in Chinese)
[2] HIGHT G K, JURY K E. Hill country sheep production. II. Lamb mortality and birth weights in Romney and Border Leicester × Romney flocks. New Zealand Journal of Agricultural Research, 1970, 13:735-752.
doi: 10.1080/00288233.1970.10430507
[3] 李庆章. 奶牛乳腺发育与泌乳生物学. 第一版. 北京: 科学出版社, 2014: 11-24.
LI Q Z. Mammary gland development and lactation biology in dairy cows. First edition. Beijing: Science Press, 2014: 11-24. (in Chinese)
[4] GUTTMAN M, RINN J L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385):339-346.
doi: 10.1038/nature10887
[5] 于红. 表观遗传学:生物细胞非编码RNA调控的研究进展. 遗传, 2009, 31(11):1077-1086.
YU H. Epigenetics: Research progress in non-coding RNA regulation of biological cells. Heredity (Beijing), 2009, 31(11):1077-1086. (In Chinese)
[6] WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 2009, 23(13):1494-1504.
doi: 10.1101/gad.1800909
[7] IBEAGHA-AWEMU E M, LI R, DUDEMAINE P L, DO D N, BISSONNETTE N. Transcriptome analysis of long non-coding RNA in the bovine mammary gland following dietary supplementation with linseed oil and safflower oil. International Journal of Molecular Sciences, 2018, 19(11):3610.
doi: 10.3390/ijms19113610
[8] KNOWLING S, MORRIS K V. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie, 2011, 93(11):1922-1927.
doi: 10.1016/j.biochi.2011.07.031
[9] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2):358-369.
doi: 10.1016/j.cell.2011.09.028
[10] CAO J. The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 2014, 16:11.
[11] STANDAERT L, ADRIAENS C, RADAELLI E, VAN KEYMEULEN A, BLANPAIN C, HIROSE T. The long noncoding RNA neat1 is required for mammary gland development and lactation. RNA, 2014, 20(12):1844-1849.
doi: 10.1261/rna.047332.114
[12] GINGER M R, SHORE A N, CONTRERAS A, RIJNKELS M, MILLER J, GONZALEZ-RIMBAU M F, ROSEN J M. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15):5781-5786.
[13] LANZ R B, CHUA S S, BARRON N, SÖDER B M, DEMAYO F, O'MALLEY B W. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Molecular and Cellular Biology, 2003, 23(20):7163-7176.
doi: 10.1128/MCB.23.20.7163-7176.2003
[14] YANG B, JIAO B, GE W, ZHANG X, WANG S, ZHAO H, WANG X. Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics, 2018, 19(1):605.
doi: 10.1186/s12864-018-4974-5
[15] ZHENG X, NING C, ZHAO P, FENG W, JIN Y, ZHOU L, YU Y, LIU J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. Journal of Dairy Science, 2018, 101(12):11061-11073.
doi: 10.3168/jds.2018-14900
[16] YU S, ZHAO Y, LAI F, CHU M, HAO Y, FENG Y, ZHANG H, LIU J, CHENG M, LI L, SHEN W, MIN L. LncRNA as ceRNAs may be involved in lactation process. Oncotarget, 2017, 8(58):98014-98028.
doi: 10.18632/oncotarget.v8i58
[17] JI Z, CHAO T, LIU Z, HOU L, WANG J, WANG A, ZHOU J, XUAN R, WANG G, WANG J. Genome-wide integrated analysis demonstrates widespread functions of lncRNAs in mammary gland development and lactation in dairy goats. BMC Genomics, 2020, 21(1):254.
doi: 10.1186/s12864-020-6656-3
[18] NI Y, WU F, CHEN Q, CAI J, HU J, SHEN J, ZHANG J. Long noncoding RNA and mRNA profiling of hypothalamic- pituitary-mammary gland axis in lactating sows under heat stress. Genomics, 2020, 112(5):3668-3676.
doi: 10.1016/j.ygeno.2020.04.021
[19] CHEN W, LV X, WANG Y, ZHANG X, WANG S, HUSSAIN Z, CHEN L, SU R, SUN W. Transcriptional profiles of long non-coding RNA and mRNA in sheep mammary gland during lactation period. Frontiers in Genetics, 2020, 11:946.
doi: 10.3389/fgene.2020.00946
[20] HAO Z, LUO Y, WANG J, HU J, LIU X, LI S, JIN X, KE N, ZHAO M, HU L, WU X, QIAO L. RNA-Seq reveals the expression profiles of long non-coding RNAs in lactating mammary gland from two sheep breeds with divergent milk phenotype. Animals, 2020, 10(9):1565.
doi: 10.3390/ani10091565
[21] 赵有璋. 中国养羊学. 北京: 中国农业出版社, 2013: 666.
ZHAO Y Z. Sheep and goat production in China. Beijing: China Agriculture Press, 2013: 666. (in Chinese)
[22] 韦科龙, 谭正准, 黄健, 李辉, 钟华配, 覃广胜. 奶水牛乳腺组织手术采样. 黑龙江畜牧兽医, 2017, 4:97-98.
WEI K L, TAN Z Z, HUANG J, LI H, ZHONG H P, QIN G S. Surgical sampling of mammary gland tissue of milk buffalo. Heilongjiang Animal Science and Veterinary Medicine, 2017, 4:97-98. (In Chinese)
[23] 杨兵. 奶牛乳腺差异表达长链非编码RNA的筛选, 鉴定及其功能研究[D]. 杨凌: 西北农林科技大学, 2019.
YANG B. Screening, identification and functional studies of long non-coding RNAs differentially expressed in mammary gland of dairy cows[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[24] AKERS R M. A 100-year review: Mammary development and lactation. Journal of Dairy Science, 2017, 100(12):10332-10352.
doi: 10.3168/jds.2017-12983
[25] LI Z, HUANG C, BAO C, CHEN L, LIN M, WANG X, ZHONG G, YU B, HU W, DAI L, ZHU P, CHANG Z, WU Q, ZHAO Y, JIA Y, XU P, LIU H, SHAN G. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015, 22(3):256-264.
doi: 10.1038/nsmb.2959
[26] LAHIRY P, WANG J, ROBINSON J F, TUROWEC J P, LITCHFIELD D W, LANKTREE M B, GLOOR G B, PUFFENBERGER E G, STRAUSS K A, MARTENS M B, RAMSAY D A, RUPAR C A, SIU V, HEGELE R A. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. American Journal of Human Genetics, 2009, 84(2):134-147.
doi: 10.1016/j.ajhg.2008.12.017
[27] VERARDO L L, SILVA F F, VARONA L, RESENDE M D, BASTIAANSEN J W, LOPES P S, GUIMARÃES S E. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs. Journal of Applied Genetics, 2015, 56(1):123-132.
doi: 10.1007/s13353-014-0240-y
[28] WINTERMANTEL T M, BOCK D, FLEIG V, GREINER E F, SCHÜTZ G. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Molecular Endocrinology, 2019, 19(2):340-349.
doi: 10.1210/me.2004-0068
[29] Cowell I G. E4BP4/NFIL3, a PAR-related bZIP factor with many roles. BioEssays, 2002, 24(11):1023-1029.
pmid: 12386933
[30] GHADIRI S, SPALENZA V, DELLAFIORA L, BADINO P, BARBAROSSA A, DALL'ASTA C, NEBBIA C, GIROLAMI F. Modulation of aflatoxin B1 cytotoxicity and aflatoxin M1 synthesis by natural antioxidants in a bovine mammary epithelial cell line. Toxicology in vitro, 2019, 57:174-183.
doi: 10.1016/j.tiv.2019.03.002
[31] AHN J, GAMMON M D, SANTELLA R M, GAUDET M M, BRITTON J A, TEITELBAUM S L, TERRY M B, NEUGUT A I, ENG S M, ZHANG Y, GARZA C, AMBROSONE C B. Effects of glutathione S-transferase A1 (GSTA1) genotype and potential modifiers on breast cancer risk. Carcinogenesis, 2006, 27(9):1876-1882.
doi: 10.1093/carcin/bgl038
[32] SHAO S, BROWN A, SANTHANAM B, HEGDE R S. Structure and assembly pathway of the ribosome quality control complex. Molecular Cell, 2015, 57(3):433-444.
doi: 10.1016/j.molcel.2014.12.015
[33] BI X, JONES T, ABBASI F, LEE H, STULTZ B, HURSH D A, MORTIN MA. Drosophila caliban, a nuclear export mediator, can function as a tumor suppressor in human lung cancer cells. Oncogene, 2005, 24(56):8229-8239.
doi: 10.1038/sj.onc.1208962
[34] HUANG Z, PANG G, HUANG Y G, LI LI. miR-133 inhibits proliferation and promotes apoptosis by targeting LASP1 in lupus nephritis. Experimental and Molecular Pathology, 2020, 114:104384.
doi: 10.1016/j.yexmp.2020.104384
[35] GÜRTLER F, JORDAN K, TEGTMEIER I, HEROLD J, STINDL J, WARTH R, BANDULIK S. Cellular pathophysiology of mutant voltage-dependent Ca2+ channel CACNA1H in primary aldosteronism. Endocrinology, 2020, 161(10):135.
[36] REINHARDT T A, HORST R L. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. American Journal of Physiology, 1999, 276(4):796-802.
[37] CHEN Z, LUO J, SUN S, CAO D, SHI H, LOOR J J. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis via PPARGC1A and PPARA in goat mammary epithelial cells. RNA Biology, 2017, 14(3):326-338.
doi: 10.1080/15476286.2016.1276149
[38] 黄千殷, 曹小迎, 张宇琛, 刘天罡, 徐焱成. 通过硫酯反应检测脂肪酸代谢中间产物. 武汉大学学报 (医学版), 2017, 38(5):724-727.
HUANG Q Y, CAO X Y, ZHANG Y C, LIU T G, XU Y C. Application of a novel thioester decomposition reaction in fatty acid biosynthesis intermediates analysis. Medical Journal of Wuhan University, 2017, 38(5):724-727. (in Chinese)
[39] HOU X, JIANG M, ZHOU J, SONG S, ZHAO F, LIN Y. Examination of methionine stimulation of gene expression in dairy cow mammary epithelial cells using RNA-sequencing. Journal of Dairy Research, 2020, 87(2):226-231.
doi: 10.1017/S0022029920000199
[40] FORNETTI J, FLANDERS K C, HENSON P M, TAN A C, BORGES V F, SCHEDIN P. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization. Cell Death and Differentiation, 2016, 23(2):185-196.
doi: 10.1038/cdd.2015.82
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[9] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[10] CHEN HuaZhi,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,ZHENG YanZhen,FU ZhongMin,XU GuoJun,CHEN DaFu,GUO Rui. Comparison and Potential Functional Analysis of Long Non-Coding RNAs Between Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2021, 54(2): 435-448.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[13] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
[14] LI WenJuan,TAO Hui,ZHANG NaiFeng,MA Tao,DIAO QiYu. Effects of High-Fat Diet on Energy Metabolism and Slaughter Performance of Early-Weaning Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2206-2216.
[15] ZHOU DingDing, FAN YuanChan, WANG Jie, JIANG HaiBin, ZHU ZhiWei, FAN XiaoXue, CHEN HuaZhi, DU Yu, ZHOU ZiYu, XIONG CuiLing, ZHENG YanZhen, FU ZhongMin, CHEN DaFu, GUO Rui. Regulatory Function of Long Non-Coding RNAs in Ascosphaera apis [J]. Scientia Agricultura Sinica, 2021, 54(1): 224-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!