Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (14): 3134-3148.doi: 10.3864/j.issn.0578-1752.2021.14.018

• RESEARCH NOTES • Previous Articles    

Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods

ZHANG Wei1,2(),WANG ShiYin1(),GAO Li1,YANG LiWei1,DENG ShuangYi1,LIU XiaoNa1,SHI GuoQing2,GAN ShangQuan2()   

  1. 1Xinjiang Agricultural Professional Technological College, Changji 831100, Xinjiang
    2State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, Xinjiang
  • Received:2020-06-03 Accepted:2020-10-30 Online:2021-07-16 Published:2021-07-26
  • Contact: ShiYin WANG,ShangQuan GAN E-mail:zhangweigsau@163.com;wangshiyinxjnzy@163.com;shangquangan@163.com

Abstract:

【Objective】The aim of this study was to deeply reveal the target genes of miR-486 in skeletal muscle of Bashbay sheep during different development periods, and to get basic data for finally uncover the molecular regulation mechanism of excellent meat traits of this sheep breed, then finally to support to further breeding. 【Method】The skeletal muscle of Bashbay sheep were collected during 40 d, 50 d, 60 d, 80 d, 100 d and 120 d of fetal period, and 1, 2, and 3 months old of new born sheep. The total RNA was extracted, and two cDNA libraries of miR-486 target genes were constructed using mRNA of fetal and postnatal period, respectively, then the library was sequenced applied high-throughput sequencing technology. Based on the function analysis, 10 candidate target genes were selected, and their express patterns in Bashbay sheep skeletal muscle of 10 development periods mentioned above were detected by qRT-PCR. By analyzing the expression pattern of these 10 candidate target genes and miR-486 in skeletal muscle of Bashbay sheep, their target regulation relationship and functions were primarily verified. Finally, 4 candidate target genes were chosen to confirm their regulation relationship using the double luciferase reporter assay and target regulation assay in satellite cell of skeletal muscle of Bashbay sheep. 【Result】Total 123 and 118 target genes of fetal and postnatal period were obtained, respectively. Due to these target genes were not confirmed by further function assay, so they were called candidate target genes temporarily. Among of them, 96 genes were expressed in skeletal muscle of fetal and postnatal period, 27 and 22 genes were specially expressed in these two periods respectively. The result of GO and KEGG analysis showed that these candidate target genes regulated mass pathways related to muscle cell differentiation and development, just like PI3k-Akt, MAPK, Wnt, Adherens junction and Regulation of actin cytoskeleton, etc. All 10 candidate target genes were expressed in skeletal muscle of Bashbay sheep, but their expression patterns were different. Among of them,PTEN, Foxo1, Dock3, PAX7, IGF1R, PIK3I1 and FBN1 were expressed at a relatively high level in the fetal period skeletal muscle of Bashbay sheep, but were significantly down regulated during postnatal period, and OLFM4 showed an opposite expression pattern compared with above 7 genes. The expression of ARHGAP5 and PDCD4 gene did not found significantly change in all 10 development periods of Bashbay sheep. The result of double luciferase reporter assay showed that miR-486 could bind the target sites of PTEN, Foxo1, IGF1R and PIK3I1 efficiently, and significantly suppressed the activity of firefly luciferase. In skeletal muscle satellite cell, mir-486 also could down-regulate mRNA of these four genes significantly, and finally suppressed their biology functions. So it was ultimately confirmed that miR-486 could regulate these 4 target genes indeed in skeletal muscle of Bashbay sheep. 【Conclusion】The investigation deeply revealed the target genes of miR-486 in skeletal muscle of Bashbay sheep during different development periods for the first time, and comprehensively analyzed the biology process and signaling pathway they participated. The further function assay proved that the data of target genes were reliable. These data would help to uncover the molecular regulation mechanisms related to excellent meat traits of Bashbay sheep.

Key words: Bashbay sheep, miR-486, target gene, skeletal muscle, cDNA library

Table 1

qRT-PCR primer of 10 candidate target genes"

基因 Gene 登录号* Transcript ID 引物名称 Primers name 引物序列(5′-3′) Sequence of primers 片段大小 Size (bp)
PTEN ENSOART00000015407.1 PTENqF GTATTTGCAGTATAGAGCGTGC 165
PTENqR GGATTTGATGACTCCTCTACTG
Foxo1 ENSBTAT00000061127.3 Foxo1qF CCACAGCAATGACGACTTCGAC 275
Foxo1qR GACTGGGTGGACACAGTCAATG
Dock3 ENSOART00000008795.1 Dock3qF AATCAGCCAAGCCTTCAGCTAG 246
Dock3qR TCTGCTCCCAGTCCATCATGTC
PAX7 ENSOART00000011524.1 PAX7qF GTTCGATTAGCCGAGTGCTCAG 274
PAX7qR GTAGATGTCTGGGTAGTGGGTC
ARHGAP5 ENSOART00000006997.1 ARHG5qF GTCTATCAGAACCATGTACAGC 189
ARHG5qR CATACACCTCTTTGCTATCAGC
OLFM4 ENSOART00000007293.1 OLFM4qF GACCATCTCCAAGAAGTTCGAG 159
OLFM4qR CTTGATCAGCTCAAAGTCCAGC
IGF1R ENSOART00000010895.1 IGF1RqF GGAAGAGCTCGAGACTGAGTAC 159
IGF1RqR GACAAAGTTAGAGGCGCTGCAG
PIK3R1 ENSOART00000006390.1 PIK3R1qF CATGGGGATTACACTCTTACAC 147
PIK3R1qR CTAGAGATTCATTCCGGTAGTG
FBN1 ENSOART00000022901.1 FBN1qF GGATTTCACGTCACACGAGATG 208
FBN1qR ACACAACGCCCATTCATGCAGA
PDCD4 ENSOART00000011353.1 PDCD4qF ATTGCTAGAGCTGTTGGAGATG 250
PDCD4qR TCAGCTTCAGAAATGTCTCCAG
β-actin ENSOART00000003275.1 β-actin qF TGTGCGTGACATCAAGGAGAAG 177
β-actinqR AGGAAGGAAGGCTGGAAGAG

Table 2

The primers used to construct luciferase reporter vectors"

引物 Primer 引物序列(5′-3′) Sequence of primers 片段大小Size (bp) 试验用途 Experiment
PTENcF ccctcgagggCACCTTTCTTTAGCATGCTAC 262 载体构建
Vector construction
PTENcR ccaagcttggGATAGCCTCCACATTTGTATG
PTENmutF GAATCTGTATTGGGGTACcttcATGAACCTTCCACAACAT 262 靶位点突变
Mutate bind site
PTENmutR ATGTTGTGGAAGGTTCATgaagGTACCCCAATACAGATTC
Foxo1cF ccctcgagggGAGAAGCAGTCCAAAGATGTC 221 载体构建
Vector construction
Foxo1cR ccaagcttggATGGTGTAGTGAGTTTGGCAC
Foxo1mutF CGAAGACGCTTCCTGTACcttcTGTTTGCCCAGTGTTTGC 221 靶位点突变
Mutate bind site
Foxo1mutR GCAAACACTGGGCAAACAgaagGTACAGGAAGCGTCTTCG
IGF1RcF ccctcgagggGAGAATCCCAATGGATTGATC 237 载体构建
Vector construction
IGF1RcR ccaagcttggGGATGAAGTTCTCATATGTCG
IGF1RmutF GTGTCCAGACAGGAGTACcttcAGTATGGAGGAGCCAAGC 237 靶位点突变
Mutate bind site
IGF1RmutR GCTTGGCTCCTCCATACTgaagGTACTCCTGTCTGGACAC
PIK3R1cF ccctcgagggCTGAAGGCTAAATTCACAGTG 267 载体构建
Vector construction
PIK3R1cR ccaagcttggTAACAGCCAAGTACTCTGTAC
PIK3R1mutF GCTTTTAAAGAAATGTACcttcTGCCAGTTTGTCAAGTCG 267 靶位点突变
Mutate bind site
PIK3R1mutR CGACTTGACAAACTGGCAgaagGTACATTTCTTTAAAAGC

Table 3

The sequences of miR-486 mimics, miR-486 inhibitor and their negative controls"

名称 Name 序列(5′-3′) Sequence
miR-486 mimics UCCUGUACUGAGCUGCCCCGAG
miR-486 mimics negative control CAGUACUAGCGUGUAGUACCAA
miR-486 inhibitor CUCGGGGCAGCUCAGUACAGGA
miR-486 inhibitor negative control GCAUGGCUUGAGUCCGUAAGAU

Fig. 1

The top 10 items in GO analysis of candidate target genes A and B are GO analysis results of fetal and postnatal period, y axis show the GO items, X axis show the percentage of the candidate target genes enriched in one GO item account for the candidate target genes noted in one kind of GO mold"

Fig. 2

KEGG analysis result of candidate target genes A and B are KEGG analysis result of fetal and postnatal period candidate target genes, y axis show the pathway name, X axis show the rich factor, bubble size reflect the number of candidate target genes enriched to a certain pathway/all quantities in the background, color reflect the significance level of a certain pathway"

Fig. 3

The relative expression levels of 10 candidate target genes in skeletal muscle of Bashbay sheep in different development stages Figure A to J are qRT-PCR results of 10 candidate target genes in skeletal muscle of Bashbay sheep in different development stages, the abscissa axis shows the different development stages of Bashbay skeletal muscle, 1 to 10 shows the 40, 50, 60, 80, 100 and 120 d of fetus periods, and the day of birth, and 30, 60 and 90 d of postnatal periods, expression levels without letters or with the same letters have no significant difference (P>0.05), with the different lowercase letters have significant differences (P<0.05), with the different capital letters have extremely significant differences (P<0.01). The same as below "

Fig. 4

Double luciferase reporter assay experiments A: the insert site of candidate target gene fragment in vector and the sequence of wild (WT) and mutant (Mut) type, the base with underline are mutated bases achieved by overlap extension PCR. B: the relative luciferase activity determined 48 h after transfection. Data are expressed as means ± SD of three independent experiments, NC is negative control of miR-486"

Fig. 5

The relative expression levels of 4 candidate target genes in transfected cells A, B, C and D are relative expression levels of 4 candidate target genes in transfected cells during 24, 48 and 72 h"

[1] 努尔拉提汗·木哈买提别克, 赛力克·木勒达汗, 努尔古丽·热孜别克, 决肯·阿尼瓦什. 新疆巴什拜羊青色和白色毛绒品质比较分析. 新疆畜牧业, 2015, 11:25-27.
MUHAMAITIBIEKE N, MULEDAHAN S, REZIBIEKE N, ANIWASHI J. Analysis of white and cyan wool quality of Bashbay sheep. Xinjiang Animal Husbandry, 2015, 11:25-27. (in Chinese)
[2] 决肯·阿尼瓦什, 克木尼斯汗, 海拉提, 季文凭, 杜曼. 巴什拜羊瘦肉型新品系的培育及其生产性能分析. 新疆农业科学, 2010, 47(2):406-409.
ANIWASHI J, KEMUNISIHAN, HAILATI, JI W P, DU M. Analysis of breeding and production performance of new strain lean meat type Bashbay sheep. Xinjiang Agricultural Sciences, 2010, 47(2):406-409. (in Chinese)
[3] 韩业东, 决肯·阿尼瓦什, 帕娜尔·依都拉, 李齐发, 谢庄. 巴什拜羊群体遗传多样性与遗传分化的研究. 南京农业大学学报, 2011, 34(1):123-127.
HAN Y D, ANIWASHI J, YIDULA P, LI Q F, XIE Z. Study on genetic diversity and genetic differentiation among Bashbay sheep populations. Journal of Nanjing Agricultural University, 2011, 34(1):123-127. (in Chinese)
[4] 刘真, 王慧华, 刘瑞凿, 吴明明, 张淑珍, 张莉, 赵福平, 杜立新, 魏彩虹. 不同尾型绵羊全基因组选择信号检测. 畜牧兽医学报, 2015, 46(10):1721-1732.
LIU Z, WANG H H, LIU R Z, WU M M, ZHANG S Z, ZHANG L, ZHAO F P, DU L X, WEI C H. Genome-wide detection of selection signatures of distinct tail types in sheep populations. Chinese Journal of Animal and Veterinary Science, 2015, 46(10):1721-1732. (in Chinese)
[5] MIRETTI S, MARTIGNANI E, ACCORNERO P, BARATTA M. Functional effect of miR-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype. BMC Genomics, 2013, 14(1):1-8.
doi: 10.1186/1471-2164-14-1
[6] CLOP A, MARCQ F, TAKEDA H, PIROTTIN D, TORDOIR X, BIBÉ B, BOUIX J, CAIMENT F, ELSEN J M, EYCHENNE F, LARZUL C, LAVILLE E MEISH F, MILENKOVIC D, TOBIN J, CHARLIER C, GEORGES M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38(7):813-818.
doi: 10.1038/ng1810
[7] ALEXANDER M S, CASAR J C, MOTOHASHI N, MYERS J A, EISENBERG I, GONZALEZ R T, ESTRELLA E A, KANG P B, KAWAHARA G, KUNKEL L M. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skeletal Muscle, 2011, 1(1):27. DOI: 10.1186/2044-5040-1-27.
doi: 10.1186/2044-5040-1-27
[8] HITACHI K, NAKATANI M, TSUCHIDA K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. The International Journal of Biochemistry&Cell Biology, 2014, 47:93-103.
[9] 张伟, 王世银, 邓双义, 杨力伟, 石国庆, 甘尚权. 巴什拜羊骨骼肌不同发育阶段差异表达miRNA研究. 农业生物技术学报, 2018, 26(1):104-112.
ZHANG W, WANG S Y, DENG S Y, YANG L W, SHI G Q, GAN S Q. Research of differentially expressed miRNA of skeletal muscle during different development stages in Bashbay sheep (Ovis aries) . Journal of Agircultural Biotechnology, 2018, 26(1):104-112. (in Chinese)
[10] 张伟, 王世银, 石国庆, 邓双义, 刘晓娜, 杨力伟. 巴什拜羊miR-486多态性及其表达规律研究. 农业生物技术学报, 2020, 28(1):92-100.
ZHANG W, WANG S Y, SHI G Q, DENG S Y, LIU X N, YANG L W. Polymorphism of miR-486 and its expression pattern in Bashbay sheep (Ovis aries) . Journal of Agircultural Biotechnology, 2020, 28(1):92-100. (in Chinese)
[11] 甘尚权, 高蕊, 王立民, 沈敏, 王新华, 刘守仁. 获取miRNA候选靶基因的方法及其专用反转录引物[P]. 中国, 发明专利, CN103194441A, 2013- 07- 10.
GAN S Q, GAO R, WANG L M, SHEN M, WANG X H, LIU S R. The method and special primers of obtaining target genes of miRNA[P]. China, Patent for Invention, CN103194441A, 2013- 07- 10. (in Chinese)
[12] CAMON E, MAGRANE M, BARRELL D, LEE V, DIMMER E, MASLEN J, BINNS D, HARTE N, LOPEZ R, APWEILER R. The gene ontology annotation (GOA) database: sharing knowledge in uniprot with gene ontology. Nucleic Acids Research, 2004, 32(Database issue):D262.
doi: 10.1093/nar/gkh021
[13] HATTORI M, ITOH M, ARAKI M, HIRAKAWA M, KAWASHIMA S, OKUDA S, GOTO S, KATAYAMA T, TOKIMATSU T, YAMANISHI Y, KANEHISA M. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2007, 36(Suppl.1):D480-D484.
doi: 10.1093/nar/gkm882
[14] PICARD B, LEFAUCHEUR L, BERRI C, DUCLOS M J. Muscle fiber ontogenesis in farm animal species. Reproduction Nutrition Development, 2002, 42(5):415-431.
doi: 10.1051/rnd:2002035
[15] STICKLAND N C, DEMIRTAS B, CLELLAND A K, ASHTON C. Genetic and nutritional influence on muscle growth in farm animals. Comparative Biochemistry and Physiology Part A: Molecular&Integrative Physiology, 2000, 126, 141. DOI: 10.1016/S1095-6433(00)80279-2.
[16] ABMAYR S M, PAVLATH G K. Myoblast fusion: Lessons from flies and mice. Development, 2012, 139(4):641-656.
doi: 10.1242/dev.068353
[17] WILSON S J, MCEWAN J C, SHEARD P W, HARRIS A J. Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis muscle. Journal of Muscle Research & Cell Motility, 1992, 13(9):534-550.
[18] DRAEGER A, WEEDS A G, FITZSIMONS R B. Primary, secondary and tertiary myotubes in the developing skeletal muscle: a new approach to analysis of human myogenesis. Journal of the Neurological Sciences, 1987, 81(1):19-43.
doi: 10.1016/0022-510X(87)90181-X
[19] LEFAUCHEUR L, EDOM F, ECOLAN P, BUTLER-BROWNE G S. Pattern of muscle fiber type formation in the pig. Development Dynamics, 1995, 203(1):27-41.
doi: 10.1002/aja.1002030104
[20] MASCARELLO J, STECHINI M L, ROWLERSON A, BALLOCHI E. Tertiary myotubes in postnatal growing pig muscle detected by their myosin isoform composition. Journal of Animal Science, 1992, 70(6):1806-1813.
doi: 10.2527/1992.7061806x
[21] 李雪娇, 刘晨曦, 杨开伦, 刘明军. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究. 草食家畜, 2017(4):1-6.
LI X J, LIU C X, YANG K L, LIU M J. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese Merino Sheep. Grass-feeding Livestock, 2017(4):1-6. (in Chinese)
[22] 李雪娇, 刘晨曦, 孙亚伟, 杨开伦, 刘明军. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究. 西北农林科技大学学报(自然科学版), 2018, 46(5):7-13.
LI X J, LIU C X, SUN Y W, YANG K L, LIU M J. Study on structure development characteristics of German Merino sheep fetal skeletal muscle tissue. Journal of Northwest A &F University (Natural Science Edition), 2018, 46(5):7-13. (in Chinese)
[23] 石田培, 王欣悦, 侯浩宾, 赵志达, 尚明玉, 张莉. 基于全转录组测序的绵羊胚胎不同发育阶段骨骼肌circRNA的分析与鉴定. 中国农业科学, 2020, 53(6):642-657.
SHI T P, WANG X Y, HOU H B, ZHAO Z D, SHANG M Y, ZHANG L. Analysis and identification of circRNAs of skeletal muscle at different stages of sheep embryos based on whole transcriptome sequencing. Scientia Agricultura Sinica, 2020, 53(6):642-657. (in Chinese)
[24] SMALL E M, O′ROURKE J R, MORESI V, SUTHERLAND L B, MCANALLY J, GERARD R D, RICHARDSON J A, OLSON E N. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA- 486. PNAS, 2010, 107(9):4218-4223.
doi: 10.1073/pnas.1000300107
[25] PORTER N C, RESNECK W G, O’NEILL A, VAN ROSSUM D B, STONE M R, BLOCH R J. Association of small ankyrin 1 with the sarcoplasmic reticulum. Molecular Membrane Biology, 2005, 22(5):421-432.
doi: 10.1080/09687860500244262
[26] SONG M S, SALMENA L, PANDOLFI P P. The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, 13:283-296.
doi: 10.1038/nrm3330
[27] YUE F, BI P P, WANG C, SHAN T Z, NIE Y H, RATLIFF T L, GAVIN T P, KUANG S KUANG S. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nature Communications, 2017, 8, 14328. https://doi.org/10.1038/ncomms14328.
doi: 10.1038/ncomms14328
[28] HAKUNO F, YAMAUCHI Y, KANEKO G, YONEYAMA Y, NAKAE J, CHIDA K, KADOWAKI T, YAMANOUCHI K, NISHIHARA M, TAKAHASHI S. Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. PLoS One, 2011, 6:e25655.
doi: 10.1371/journal.pone.0025655
[29] XU M, CHEN X L, CHEN D W, YU B, HUANG Z Q. FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget, 2017, 8(6):10662-10674.
doi: 10.18632/oncotarget.v8i6
[30] ALEXANDER M S, CASAR J C, MOTOHASHI N, VIEIRA N M, EISENBERG I, MARSHALL J L, GASPERINI M J, LEK A, MYERS J A, ESTRELLA E A, KANG P B, SHAPIRO F, RAHIMOV F, KAWAHARA G, WIDRICK J J, KUNKEL L M. MicroRNA-486- dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. The Journal of Clinical Investigation, 2014, 124(6):2651-2667.
doi: 10.1172/JCI73579
[31] XU J, LI R S, WORKENEH B, DONG Y L, WANG X N, HU Z Y. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney International, 2012, 82:401-411.
doi: 10.1038/ki.2012.84
[32] WANG X H, MITCH W E. Mechanisms of muscle wasting in chronic kidney disease. Nature Reviews Nephrology, 2014, 10(9):504-516.
doi: 10.1038/nrneph.2014.112
[33] PONNUSAMY A, SINHA S, HYDE G D, BORLAND S J, TAYLOR R F, POND E, EYRE H J, INKSON C A, GILMORE A, ASHTON N, KALRA P A, CANFIELD A. FTI-277 inhibits smooth muscle cell calcification by up-regulating PI3K/Akt signaling and inhibiting apoptosis. PLoS ONE, 2018, 13(4):e0196232.
doi: 10.1371/journal.pone.0196232
[34] GLASS D. Molecular mechanisms modulating muscle mass. TRENDS in Molecular Medicine, 2003, 9(8):344-350.
doi: 10.1016/S1471-4914(03)00138-2
[35] DUTT V, GUPTA S, DABUR R, INJETI E, MITTAL A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacological Research, 2015, 99:86-100.
doi: 10.1016/j.phrs.2015.05.010
[36] GLASS D L. Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry&Cell Biology, 2005, 37(10):1974-1984.
[37] STITT T N, DRUJAN D, CLARKE B A, PANARO F, TIMOFEYVA Y, KLINE W O, GONZALEZ M, YANCOPOULOS G D, GLASS D J. The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors. Molecular Cell, 2004, 14(3):395-403.
doi: 10.1016/S1097-2765(04)00211-4
[38] MARGOLIA L M, BERRYMAN C E, MURPHY N E, CARRIGAN C T, YOUNG A J, CARBONE J W, PASIAKOS S M. PI3K-AKT- FOXO1 pathway targeted by skeletal muscle microRNA to suppress proteolytic gene expression in response to carbohydrate intake during aerobic exercise. Physiological Reports, 2018, 6(23):e13931.
doi: 10.14814/phy2.13931
[39] YU Y H, CHU W L, CHAI J K, LI X, LIU L Y, MA L. Critical role of miRNAs in mediating skeletal muscle atrophy. Molecular Medicine Reports, 2016, 13:1470-1474.
doi: 10.3892/mmr.2015.4748
[40] GEBERT L F R, MACRAE I J. Regulation of microRNA function in animals. Nature Reviews Molecular Cell Biology, 2019, 20(1):21-37.
doi: 10.1038/s41580-018-0045-7
[41] SEOK H, HAM J, JANG E S, CHI S W. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Molecules and Cells, 2016, 39(5):375-381.
doi: 10.14348/molcells.2016.0013
[42] ANDERSON C, CATOE H, WERNER R. miR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Research. 2006, 34(20):5863-5871.
doi: 10.1093/nar/gkl743
[43] GUO H, INGOLIA N T, WEISSMAN J S, BARTEL D P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308):835-841.
doi: 10.1038/nature09267
[44] DJURANOVIC S, NAHVI A, GREEN R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 2012, 336(6078):237-240.
doi: 10.1126/science.1215691
[45] HAUSSER J, ZAVOLAN M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression. Nature Reviews Genetics, 2014, 15(9):599-612.
doi: 10.1038/nrg3765
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[3] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[6] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[7] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[8] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[9] ZHANG WenYing, HAN Xu, ZHU XuDong, XIE ZhenQiang, JIU SongTao, HUANG YuQing, JIA HaiFeng, FANG JingGui, WANG Chen. Identification of the Target Genes of VvmiR159s and Their Regulation in Response to GA in Different Tissues of Grape Berry [J]. Scientia Agricultura Sinica, 2019, 52(16): 2858-2870.
[10] LI Yan,CHEN MingMing,ZHANG JunXing,ZHANG LinLin,LI Xin,GUO Hong,DING XiangBin,LIU XinFeng. Effects of Bovine LncRNA-133a on the Proliferation and Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2019, 52(1): 143-153.
[11] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[12] LI Shuai, JIANG XiZi, LIANG WeiFang, CHEN SiHan, ZHANG XiangXiang, ZUO DengPan, HU YaHui, JIANG Tong. Screening of the Host Factors of Woodland Strawberry Interacting with P6 of Strawberry vein banding virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2017, 50(18): 3519-3528.
[13] CHI Ji-na, CAI Xiao, ZHANG Jian-hong, ZHEN Jun-bo, LIU Lin-lin, TIAN Hai-yan, TANG Li-yuan, LIU Cun-jing, CUI Rui-min, ZHANG Xiang-yun. Establishment and Identification of a Normalized Full-Length cDNA Library of Upland Cotton Ji228 [J]. Scientia Agricultura Sinica, 2016, 49(5): 813-824.
[14] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[15] LUO Wei-yu, ZHU Peng-yang, ZHANG Jie, HU Yong-hao, KONG Hui-hui, LIANG Li-bin, ZHOU Yuan, LI Cheng-jun, JIANG Li, CHEN Hua-lan. Construction of cDNA Library Derived from Human Lung Epithelial Cell Lines and Screening for Host Cellular Proteins Interacting with Influenza Virus Nucleoprotein [J]. Scientia Agricultura Sinica, 2016, 49(22): 4451-4459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!