Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 195-204.doi: 10.3864/j.issn.0578-1752.2017.01.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles    

Insight into Genetic Basis of Bombyx mori Resistant Strains with Resistance to BmNPV by Molecular Linkage Analysis

GAO Rui1, LI ChunLin1, TONG XiaoLing1, CAO MingYa1, SHI MeiNing2, XU AnYing3LU Cheng1, DAI FangYin1   

  1. 1College of biotechnology, Southwestern University/State Key Laboratory of Silkworm Genome Biology/Key Laboratory of sericulture functional genomics and Biotechnology, Ministry of agriculture, Chongqing 400715; 2The Guangxi Zhuang Autonomous Region sericulture science and Technology Research Institute, Nanning 530007; 3The Sericultural Research Institute of Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu
  • Received:2016-04-28 Online:2017-01-01 Published:2017-01-01

Abstract: 【Objective】Bombyx mori nucleopolyhedrovirus (BmNPV) can lead the B. mori nucleopolyhedrosis, which caused a huge loss in the sericulture industry. The objective of this study is to map the controlling genes and understand the genetic basis underlying the BmNPV resistance to serve the theory support for resistant variety breeding. 【Method】Backcross population BC1F (using for linkage analysis) and BC1M (using for mapping analysis) were derived from crosses between the highly resistant B. mori strain 99R and the sensitive strain Dazao-N. Concentration gradient of virus was used to treat the parents, and the number of infected individuals was recorded. Then by using SPSS17.0, the LD50 for each parent was calculated. Based on appraisal of resistance performance of two parents, the virus adding concentration for BC1 population was determined and then the virus was fed to larva quantitatively at the start of 4th instar one by one. The infected individuals in the BC1F were chosen as linkage analysis materials. By using the screened polymorphism markers covering all B. mori autosomes, linkage analysis was conducted and then the genotype data were analyzed by T test to get the linkage significance level of each polymorphism marker to show whether it linked with resistance. Thereafter, polymorphism markers will be enriched on the chromosomes which include the resistance linked polymorphism markers to map resistance locus on them. 【Result】Median lethal dose (LD50) of 99R and Dazao-N is 2.92×106 and 9.78×105 polyhedral bodies, respectively, and the dose 2.0×106 was chosen as the infection dosage of BC1 backcross population, which is slightly higher than the average of two parents’ LD50. Two independent linkage analyses were conducted successively in the autumn of 2014 and spring of 2015, which got a discrepant result that the linkage analysis result could not be repeated in the following confirmation; i.e., one marker, S2205, on Chr 22 was identified to link with resistance in the 1st experiment, while no linked marker was identified in the following one. Comparison with the previous reports on the linkage and mapping analysis of BmNPV resistance, it was found that the nonrepeatability was ubiquitous in the related researches in B. mori. Previously, a molecular marker (AY380833) was found to highly link with the resistant trait in NB and 871C, which are both the highly resistance strains to BmNPV. However, the linkage relationship was not detected in the linkage analysis population of 99R and 871C here.【Conclusion】the genetic complexity of resistance by molecular linkage analysis was further proved, including the variation among different resistant strains, as well the plausible multiple resistant loci in one single strain. At the same time, it was proposed that the BmNPV resistance may be a complex trait, as a prerequisite to be one type of qualitative-quantitative traits, the quantitative trait characteristic of BmNPV resistance is very obvious.

Key words: Bombyx mori, BmNPV, resistance, molecular markers, linkage analysis

[1]    向仲怀. 蚕丝生物学. 北京: 中国林业出版社, 2005.
Xiang Z H. Biology of Sericulture. Beijing: China Forestry Press, 2005. (in Chinese)
[2]    蒋亮, 赵萍, 夏庆友. 家蚕抗病分子育种研究进展与展望. 蚕业科学, 2014, 40(4): 571-575.
Jiang L, zhao P, Xia Q Y. Research progress and prospect of silkworm molecular breeding for disease resistance. Science of Sericulture, 2014, 40(4): 571-575. (in Chinese)
[3]    Jiang L, Wang G H, Cheng T C, Yang Q, Jin S K, Lu G, Wu F Q, Xiao Y, Xu H F, Xia Q Y. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Archives of Virology, 2012, 157: 1323-1328.
[4]    克平, 林昌麒, 吴冬秀, 姚琴, 方琴琴. 家蚕保存种对核型多角体病的抗性. 蚕业科学, 1991, 17(1): 45-46.
Chen K P, Lin C Q, Wu D X, Yao Q, Fang Q Q. Resistance of preservative Bombyx mori strains to nuclear polyhedrosis virus. Science of Sericulture, 1991, 17(1): 45-46. (in Chinese)
[5]    陈克平, 林昌麒, 姚勤. 家蚕对核型多角体病的抗性及遗传规律的研究. 蚕业科学, 1996, 22(3): 160-164.
Chen K P, Lin C Q, Yao Q. Studies on the resistance to NPV and its hereditary regularity in the silkworm (Bombyx mori l.). Science of Sericulture, 1996, 22(3): 160-164. (in Chinese)
[6]    费美华, 石美宁, 闭立辉, 顾家栋, 罗坚, 韦博尤, 冯振强, 陆瑞好, 胡乐山, 黄君霆. 抗NPV感染蚕品系选育试验. 广西蚕业, 2006, 43(2): 1-6.
Fei M H, Shi M N, Bi L H, Gu J D, Luo J, Wei B Y, Feng Z Q, Lu R H, Hu L S, Huang J T. The breeding test of resistant silkworm infected by BmNPV. Guangxi Sericulture, 2006, 43(2): 1-6. (in Chinese)
[7]    李文学, 青学刚, 刘俊凤, 刘刚, 肖金树, 徐安英. 家蚕品系871C×872C对BmNPV抗性鉴定研究. 西南农业学报, 2011, 24(2): 779-781.
Li W X, Qing X G, Liu J F, Liu G, Xiao J S, Xu A Y. Appraisal study on Bombyx mori breed ‘871 C×872 C’ resistance to BmNPV. Southwest China Journal of Agricultural Sciences, 2011, 24(2): 779-781. (in Chinese)
[8]    徐安英, 林昌麒, 钱荷英, 孙平江, 张月华, 刘明珠, 李龙. 家蚕抗BmNPV新品系简介//第十届家(柞)蚕遗传育种及良种繁育学术研讨会论文集, 2013: 179-180.
Xu A Y, Lin C Q, Qian H Y, Sun P J, Zhang Y H, Liu M Z, Li L. Introduction to the new silkworm varieties resistant to BmNPV//The tenth academic symposium proceedings of the genetic breeding and seed-breeding of silkworm (tussah silkworm) , 2013: 179-180. (in Chinese)
[9]    徐安英, 林昌麒, 钱荷英, 孙平江, 张月华, 刘明珠, 李龙. 耐家蚕核型多角体病毒病蚕品系“华康2号”的育成. 蚕业科学, 2013, 39(2): 275-282.
Xu A Y, Lin C Q, Qian H Y, Sun P J, Zhang Y H, Liu M Z, Li L. Breeding of a new silkworm variety “Huakang 2”with tolerance to Bombyx mori nucleopolyhedrovirus disease. Science of Sericulture, 2013, 39(2): 275-282. (in Chinese) 
[10]   向仲怀. 家蚕遗传育种学. 北京: 中国农业出版社, 1994: 228-233.
Xiang Z H. Genetics and Breeding of Silkworm. Beijing: China Agriculture Press, 1994: 228-233. (in Chinese)
[11]   荒武义信, 上野博. 家蚕消化液对核型多角体病毒的失活作用. 日本蚕丝学杂志, 1973, 42(4): 279-284.
Yoshinobu A, Hiroshi U. Inactivation of a nuclear-polyhedrosis virus by the gut-juice of the silkworm, Bombyx mori L. The Journal of Sericultural Science of Japan, 1973, 42(4): 279-284. (in Japanese)
[12]   孟智启. 家蚕对核型多角体病毒病抵抗性遗传规律的研究. 蚕业科学, 1982, 8(8): 133-138.
Meng Z Q. Studies on resistant heredity law of Bombyx mori to B. mori nucleopolyhedrovirus. Science of Sericulture, 1982, 8(8): 133-138.(in Chinese) 
[13]   朱勇, 鲁成, 陈萍, 余贵玲, 曾华明, 冉小曾, 赵邦美. 家蚕对核型多角体病毒(NPV)抗性的遗传学研究. 西南农业大学学报, 1998, 20(2): 100-103.
Zhu Y, Lu C, Chen P, Yu G L, Zeng H M, Ran X Z, Zhao B M. Genetic studies on the resistance to NPV in silkworm (Bombyx mori L). Journal of Southwest Agricultural University, 1998, 20(2): 100-103. (in Chinese)
[14]   Yao Q, Li M W, Wang Y, Wang W B, Lu J, Dong Y, Chen K P. Screening of molecular markers for NPV resistance in Bombyx mori L. (Lep., Bombycidae). Journal of Applied Ecology, 2003, 127: 134-136.
[15]   刘晓勇, 姚勤, 陈克平. 利用RAPD技术筛选家蚕抗核型多角体病分子标记. 江苏大学学报(自然科学版), 2004, 25(1): 17-20.
Liu X Y, Yao Q, Chen K P. Studies on RAPD markers for NPV resistance in silkworm (Bombyx mori) using RAPD method. Journal of Jiangsu University (Natural Science Edition), 2004, 25(1): 17-20. (in Chinese)
[16]   赵远. 家蚕抗核型多角体病毒病的微卫星分子标记筛选筛选、定位及其病毒侵染家蚕中肠组织的差异蛋白质表达图谱研究[D]. 镇江: 江苏大学, 2007.
Zhao Y. Molecular tagging and mapping in Bombyx mori against BmNPV and the differential protein expression profiling in the midgut tissue of silkworm infected by BmNPV[D]. Zhenjiang: Jiangsu University, 2007. (in Chinese)
[17]   吕鹏. 可食用资源家蚕的核型多角体病毒抗性基因的高通量分子标记筛选、定位及相关基因功能[D]. 镇江: 江苏大学, 2014.
Lü P. Molecular tagging and mapping of resistance gene of Bombyx mori to B. mori nucleopolyhedrovirus and function of some related genes[D]. Zhenjiang: Jiangsu University, 2014. (in Chinese)
[18]   石美宁, 闭立辉, 顾家栋, 费美华, 祁广军, 韦博尤, 黄君霆, 黄玲莉, 苏红梅, 蒙艺英, 张桂征, 张雨丽, 黄旭华, 黄文功. 家蚕抗血液型脓病新品系桂蚕N2的选育. 广西蚕业, 2012, 49(4): 1-12.
SHI M N, BI L H, GU J D, FEI M H, QI G J, WEI B Y, HUANG J T, HUANG L L, SU H M, MENG Y Y, ZHANG G Z, ZHANG Y L, HUANG X H, HUANG W G. Breeding of new highly resistant nuclear polyhedrosis disease silkworm variety guican N2. Guangxi Sericulture, 2012, 49(4): 1-12. (in Chinese)
[19]   钱荷英, 徐安英, 林昌麒, 赵云坡, 孙平江, 张月华. 家蚕对核型多角体病毒病抵抗性及遗传规律的研究. 河北农业大学学报, 2006, 29(4): 77-79.
Qian H Y, Xu A Y, lin C Q, ZHAO Y P, Sun P J, Zhang Y H. Studies on the resistance to nuclear polyhedrosis virus (NPV) and its inheritance law in silkworm Bombyx mori. Journal of Agricultural University of Hebei, 2006, 29(4): 77-79. (in Chinese)
[20]   钱荷英, 高丽, 张月华, 孙平江, 徐安英. 分子标记技术检测家蚕品系抗BmNPV性能. 江苏农业科学, 2013, 41(6): 41-43.
Qian H Y, Gao L, Zhang Y H, Sun P J, Xu A Y. Molecular markers detection of the resistance to nuclear polyhedrosis virus (NPV) in silkworm strains. Jiangsu Agricultural Sciences, 2013, 41(6): 41-43. (in Chinese)
[21]   Miao X X, Xu S J, Li M H, Li M W, Huang J H, Dai F Y, Marino S W, Mills D R, Zeng P Y, Mita K, Jia S H, Zhang Y, Liu W B, Xiang H, Guo Q H, Xu AY, Kong X Y, Lin H X, Shi Y Z, Lu G, Zhang X L, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang Z H, Wang S Y, Goldsmith M R, Lu C, Zhao G P, Huang Y P. Simple sequence repeat-based consensus linkage map of Bombyx mori.Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(45): 16303-16308.
[22]   陈冬妹, 林英, 王艳霞, 杨瑜, 代方银, 夏庆友. 一种简便分离高质量家蚕基因组DNA的方法. 蚕学通讯, 2007, 27(2): 5-9.
Chen D M, Lin Y, Wang Y X, Yang Y, Dai F Y, Xia Q Y. A simple method of isolating high quality genomic DNA from the silkworm. Newsletter of Sericultural Science, 2007, 27(2): 5-9. (in Chinese)
[23]   Li M W, Shen L, Xu A Y, Miao X X, Hou C X, Sun P J, Zhang Y H, Huang Y P. Genetic diversity among the silkworm (Bombyx mori L., Lep., Bombycidae) germplasm revealed by microsatellites. Genome, 2005, 48(15): 802-810.
[24]   曹锦如, 周文林, 翁宏飚, 叶爱红, 王永强. 家蚕抗核型多角体病毒病分子标记辅助新品系选育研究. 蚕桑通报, 2008, 39(3): 19-22.
Cao J R, Zhou W L, Weng H B, Ye A H, Wang Y Q. Molecular markers-assisted breeding for silkworm resistant variety to BmNPV. Bulletin of Sericulture,2008, 39(3): 19-22. (in Chinese)
[25]   Bao Y Y, Tang X D, Lv Z Y, Wang X Y, Tian C H, Xu Y P, Zhang C X. Gene expression profiling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels. Genomics, 2009, 94: 138-145.
[26]   Bao Y Y, Lv Z Y, Liu Z B, Xue J, Xu Y P, Zhang C X. Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fatbody and haemocyte of B. mori resistant and susceptible strains. Insect Molecular Biology, 2010, 19(3): 347-358.
[27]   Zhou Y, Gao L, Shi H F, Xia H C, Gao L, Lian C Q, Chen L, Qin Yao, Chen K P, Liu X Y. Microarray analysis of gene expression profile in resistant and susceptible Bombyx mori strains reveals resistance-related genes to nucleopolyhedrovirus. Genomics, 2013, 101: 256-262.
[28]   Liu X Y, Yao Q, Wang Y, Chen K P. Proteomic analysis of nucleopolyhedrovirus infection resistance in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Journal of Invertebrate Pathology, 2010, 105: 84-90. 
[29]   Wang X Y, Yu H Z, Geng L, Xu J P, Yu D, Zhang S Z, Ma Y, Fei D Q. Comparative transcriptome analysis of Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic resistant strains. PLoS ONE, 2016, 11(5): e0155341.
[30]   Xue J, Qiao N, Zhang W, Cheng R L, Zhang X Q, Bao Y Y, Xu Y P, Gu L Z, Jackie Han J D, Zhang C X. Dynamic interactions between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. Journal of Virology, 2012, 86(13): 7345-7359.
[31]   Nguyen Q, Nielsen L K, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses, 2013, 5(11): 2721-2747.
[32]   Monteiro F, Carinhas N, Carrondo M J T, Bernal V, Alves P M. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Frontiers in Microbiology, 2012, 3: Article 391.
[33]   Vuong T D, Sonah H, Meinhardt C G, Deshmukh R, Kadam S, Nelson R L, Shannon J G, Nguyen H T. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics, 2015, 16: 593.
[34]   Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
[35]   Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M D, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43(2): 159-162.
[36]   McMullen M D, Kresovich S, Villeda H S, Bradbury P, Li H H, Sun Q, Garcia S F, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir B, Romero S, Rosas M O, alvo S, Yates S, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of  the maize nested association mapping population. Science, 2009, 325(5941): 737-740.
 
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[5] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[6] LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262.
[7] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[8] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[9] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[10] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[11] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[12] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[13] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[14] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[15] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!