Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4851-4862.doi: 10.3864/j.issn.0578-1752.2022.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica

LI ZhiLing(),LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao()   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2022-07-18 Accepted:2022-09-03 Online:2022-12-16 Published:2023-01-04
  • Contact: JingChao CHEN E-mail:82101215278@caas.cn;chenjingchao@caas.cn

Abstract:

【Objective】The objective of this study is to clone the target gene EPSPS of glyphosate in Eleusine indica, obtain the recombinant protein and antibody against EPSPS protein, then assemble the EPSPS ELSIA kit, finally, to detect the EPSPS expression and protein content of different plants and tissues of E. indica, and to provide a powerful tool for rapid identification of glyphosate resistant individuals. 【Method】The full-length of EPSPS was cloned by PCR method. The constructed pET30a-EPSPS positive plasmid was transformed into host bacteria BL21, which was induced by IPTG to express and purify the protein. Monoclonal and polyclonal antibodies were prepared by immunizing mice and New Zealand white rabbits with EPSPS recombinant protein as immunogen, and the specificity of the antibodies was detected by Western blot. Best matching antibody was screened by indirect ELISA. The working concentration of each reagent was optimized and the kit was assembled. The content of EPSPS in different E. indica populations was detected by the assembled kit and compared with the results of qPCR. 【Result】The open reading frame of EPSPS contains 1 620 bp nucleotide and encodes 540 amino acids, with a theoretical isoelectric point of 8.80. The protein has no transmembrane region. The evolutionary tree analysis showed that the evolutionary relationship between EPSPS of E. indica and EPSPS of rice was the closet. The protein could be expressed under a condition of 1 mmol·L-1 IPTG, 25℃. After purification, the purity of prokaryotic expression protein was more than 90%, the concentration was 3 mg·mL-1, and the protein content was 12 mg. Polyclonal antibodies produced from rabbits numbered R1711 and R1712 showed higher potency. Monoclonal antibodies produced from mice numbered M171070, M171071 and M171072 showed higher potency. A group of optimal matching antibodies (FL-374-08 monoclonal antibody and polyclonal antibody) were screened. The optimal concentration of coated antibody was 2 μg·mL-1. The optimal concentration of enzyme-labeled antibody was 10 μg·mL-1. The linear detection range of ELISA kit was 5-80 μg·kg-1, and the detection limit was 5 μg·kg-1. The expression of EPSPS in leaf of resistant individuals was 52.9 times higher than that in the susceptible individuals. Similarly, it was 63.0 times higher in stem. In the resistance individuals, the relative copy number of EPSPS in leaf was 53.5 times higher than that in the susceptible individuals, and it was 78.6 times higher in stem. Western blot results showed that monoclonal antibodies had specific immunity to EPSPS and could accurately distinguish the difference of protein content in different plants and tissues. The concentration of EPSPS in stem of resistant individuals was 6.0 μg·L-1, while, it was only 0.22-0.43 μg·L-1 in susceptible individuals, which detected by ELISA kit. 【Conclusion】The monoclonal antibody of EPSPS obtained in this study showed higher specificity, and sensitivity. The ELISA kit can be used to quickly and accurately identify glyphosate resistance in E. indica which caused by EPSPS overexpression.

Key words: Eleusine indica, glyphosate, antibody, resistance, rapid detection, ELISA

Table 1

Primer sequences used in this study"

用途
Use
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
克隆
Clone
EPSPS-F1 ACCAACCGCAGCCAAACCAACC
EPSPS-R1 ACGTCGGCGCAGGCG
EPSPS-F2 CGTGACCGCCGCTCG
EPSPS-R2 TTAGTTCTTGACGAAAGTGCTG
表达量分析
Expression analysis
G2(目的基因Target gene)-F GGTGGCAAGGTTAAGTTATCTGG
G2-R TCAACATAAGGGATGGAGATCAG
ALS(内参Reference)-F GCAATTTCCCCAGTGACGACC
ALS-R GCAAAAGCCTCTATCTTCCCTGT
相对拷贝数分析
Relative copy number analysis
ED-F CTGATGGCTGCTCCTTTAGCTC
ED-R CCCAGCTATCAGAATGCTCTGC
ALS(内参Reference)-F GCAATTTCCCCAGTGACGACC
ALS-R GCAAAAGCCTCTATCTTCCCTGT

Fig. 1

Cloning and analysis of EPSPS sequence of E. indica"

Fig. 2

Phylogenetic tree analysis of EPSPS sequence of E. indica"

Fig. 3

Dialysis results of EPSPS protein detected by SDS- PAGE"

Table 2

Polyclonal antibody titer test"

编号Number 100 1K 9K 81K 243K 阴性对照Negative control 效价Titer
R1711 1.789 1.764 1.586 0.692 0.360 0.150 1﹕243K
R1712 1.734 1.716 1.545 0.649 0.322 0.119 1﹕243K

Table 3

Monoclonal antibody titer test"

动物编号
Animal number
100 1K 9K 81K 243K 阴性对照
Negative control
效价
Titer
M171069 2.154 1.566 1.054 0.535 0.331 0.104 1﹕81K
M171070 1.966 1.939 1.543 0.772 0.626 0.145 1﹕243K
M171071 1.939 1.944 1.744 1.028 0.759 0.125 1﹕243K
M171072 2.002 1.944 1.753 1.139 0.711 0.137 1﹕243K

Table 4

Pairing effects of monoclonal and polyclonal antibodies"

抗体编号
Antibody number
效价
Titer
阴性对照
Negative control
重组蛋白
Recombinant protein
阳性样本
Positive sample
阴性样本
Negative sample
FL-374-01 1﹕100 0.1515 0.4524 0.1760 0.1417
FL-374-02 1﹕64K 0.1360 0.7681 0.7709 0.1614
FL-374-03 1﹕16K 0.1420 0.4806 0.3578 0.1321
FL-374-04 1﹕100 0.1322 0.5531 0.4250 0.1430
FL-374-05 1﹕256K 0.1309 0.3783 0.1352 0.1192
FL-374-06 1﹕256K 0.1221 0.4887 0.1345 0.1193
FL-374-07 1﹕1024K 0.1452 0.2869 0.1847 0.1290
FL-374-08 >1﹕1024K 0.1352 1.9016 1.5229 0.3065
FL-374-09 >1﹕1024K 0.1062 0.2559 0.2138 0.1429
FL-374-10 1﹕1024K 0.1102 0.2275 0.2050 0.1321
FL-374-11 >1﹕1024K 0.0870 0.4112 0.8804 0.1274
FL-374-12 >1﹕1024K 0.1037 0.2789 0.1690 0.1243
FL-374-13 >1﹕1024K 0.1015 0.2526 0.1591 0.1313
FL-374-14 1﹕1024K 0.0899 0.7826 0.5128 0.1306
FL-374-15 >1﹕1024K 0.0915 0.2666 0.1327 0.1160
FL-374-16 >1﹕1024K 0.0983 0.7068 0.6413 0.1355
FL-374-17 >1﹕1024K 0.1234 0.9342 1.3048 0.1977
FL-374-18 >1﹕1024K 0.1325 1.0463 3.4774 0.1905
FL-374-19 1﹕1024K 0.1102 0.2404 0.2307 0.1888
FL-374-20 >1﹕1024K 0.1519 1.6530 2.8649 0.6717
FL-374-21 1﹕256K 0.1215 0.8766 0.3307 0.1901
FL-374-22 1﹕1024K 0.1002 0.7049 0.8621 0.1706
FL-374-23 >1﹕1024K 0.1005 0.3511 0.9440 0.1478
FL-374-24 >1﹕1024K 0.1097 0.3207 0.2603 0.1486
FL-374-25 >1﹕1024K 0.1117 0.7694 0.2337 0.1512
FL-374-26 1﹕1024K 0.1062 1.3339 0.8813 0.5641
FL-374-27 >1﹕1024K 0.1311 1.4462 1.8647 0.5575
FL-374-28 1﹕1K 0.1269 0.9628 0.2446 0.1296
FL-374-29 >1﹕1024K 0.1291 0.9716 3.3775 0.4059
FL-374-30 1﹕1024K 0.1103 0.2361 0.3440 0.1240
FL-374-31 1﹕1024K 0.1077 0.3452 0.1224 0.1021
FL-374-32 1﹕1024K 0.0947 0.1878 0.1064 0.1033
FL-374-33 >1﹕256K 0.1017 0.1915 0.1317 0.1059
FL-374-34 1﹕1024K 0.1101 0.2415 0.1281 0.1101
FL-374-35 >1﹕1024K 0.0993 0.1928 0.1402 0.1118

Table 5

ELISA kit configuration"

名称Name 名称Name
包被酶标板
Coated enzyme label plate
样品提取液
Sample extracting solution
EPSPS标准品
EPSPS standard
终止液
Stop buffer
酶标工作液
Enzyme working solution
洗涤液
Cleaning solution
抗体工作液
Antibody working solution
显色剂
Chromogenic agent

Fig. 4

Expression level of EPSPS in different tissues of resistant and sensitive E. indica plants"

Fig. 5

The relative copy number of EPSPS in different tissues of resistant and sensitive E. indica plants"

Fig. 6

Western blot detection of EPSPS protein content in different tissues of resistant and sensitive E. indica plants"

Fig. 7

Preparation of standard curve of ELISA kit for detection of EPSPS"

Fig. 8

Detection of EPSPS protein concentration in different tissues of resistant and sensitive E. indica plants by ELISA"

[1] HOLM L, PLUCKNETT D L, PANCHO J V, HERBERGER J P. The World’s Worst Weeds. Distribution and Biology. Hawaii USA: The University Press of Hawaii, Honolulu, 1977.
[2] LEE L J, NGIM J. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Management Science, 2000, 56(4): 336-339.
[3] 李扬汉. 中国杂草志. 北京: 中国农业出版社, 1998.
LI Y H. Annals of Weeds in China. Beijing: China Agriculture Press, 1998. (in Chinese)
[4] CHEN J, WEI S, HUANG H, CUI H, ZHANG C, LI X. Characterization of glyphosate and quizalofop-p-ethyl multiple resistance in Eleusine indica. Pesticide Biochemistry and Physiology, 2021, 176: 104862.
doi: 10.1016/j.pestbp.2021.104862
[5] DUKE S O, POWLES S B. Glyphosate: A once-in-a-century herbicide. Pest Management Science, 2008, 64(4): 319-325.
doi: 10.1002/ps.1518 pmid: 18273882
[6] SAMMONS R D, GAINES T A. Glyphosate resistance: State of knowledge. Pest Management Science, 2014, 70(9): 1367-1377.
pmid: 25180399
[7] PRESTON C, WAKELIN A M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Management Science, 2008, 64(4): 372-376.
pmid: 18080284
[8] 李海燕, 于康震, 辛晓光, 秦运安, 李雁冰, 张晶. 禽流感间接ELISA诊断试剂盒的研制及应用. 中国预防兽医学报, 2001, 23(5): 372-376.
LI H Y, YU K Z, XIN X G, QIN Y A, LI Y B, ZHANG J. Development and validation of indirect enzyme-linked immunosorbent assay test kit for detecting anti-influenza virus antibodies. Chinese Journal of Preventive Veterinary Medicine, 2001, 23(5): 372-376. (in Chinese)
[9] 张也, 刘以祥. 酶联免疫技术与食品安全快速检测. 食品科学, 2003, 24(8): 200-204.
ZHANG Y, LIU Y X. Rapid determination of enzyme-linked immunosorbent assay on food safety. Food Science, 2003, 24(8): 200-204. (in Chinese)
[10] 杨柳, 任春梅, 缪倩, 陆芳, 程兆榜. 黄瓜绿斑驳花叶病毒的双抗夹心ELISA检测. 江苏农业学报, 2018, 34(4): 769-774.
YANG L, REN C M, MIAO Q, LU F, CHENG Z B. DAS-ELISA detection against cucumber green mottle mosaic virus. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 769-774. (in Chinese)
[11] 谭永安, 赵旭东, 姜义平, 赵静, 肖留斌, 郝德君. 绿盲蝽雷帕霉素靶蛋白的克隆、抗体制备及在蜕皮激素诱导下的应答. 中国农业科学, 2021, 54(10): 2118-2131.
TAN Y A, ZHAO X D, JIANG Y P, ZHAO J, XIAO L B, HAO D J. Cloning, preparation of antibody and response induced by 20- hydroxyecdysone of target of rapamycin in Apolyqus lucorum. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131. (in Chinese)
[12] 梁雨欣, 吴建祥, 李小宇, 张春雨, 侯吉超, 周雪平, 王永志. 马铃薯Y病毒衣壳蛋白抗原表位分析及其快速ELISA检测方法的建立. 中国农业科学, 2021, 54(6): 1154-1162.
LIANG Y X, WU J X, LI X Y, ZHANG C Y, HOU J C, ZHOU X P, WANG Y Z. Mapping of epitopes and establishment of rapid DAS-ELISA for potato virus Y coat protein. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162. (in Chinese)
[13] 陈景超, 张朝贤, 黄红娟, 魏守辉. 抗草甘膦杂草及其检测方法发展现状. 植物保护, 2011, 37(6): 44-47, 54.
CHEN J C, ZHANG C X, HUANG H J, WEI S H. Advances in research on glyphosate-resistant weeds and the detection methods. Plant Protection, 2011, 37(6): 44-47, 54. (in Chinese)
[14] CHEN J, HUANG H, WEI S, CUI H, LI X, ZHANG C. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pesticide Biochemistry and Physiology, 2020, 164: 203-208.
doi: 10.1016/j.pestbp.2020.01.014
[15] 高凯. NJ进化树构建方法的改进及其应用[D]. 北京: 北京工业大学, 2008.
GAO K. Improvement and application of neighbor-joining method for phylogenetic tree reconstruction[D]. Beijing: Beijing University of Technology, 2008. (in Chinese)
[16] 余舜武, 刘鸿艳, 罗利军. 利用不同实时定量PCR方法分析相对基因表达差异. 作物学报, 2007, 33(7): 1214-1218.
YU S W, LIU H Y, LUO L J. Analysis of relative gene expression using different real-time quantitative PCR. Acta Agronomica Sinica, 2007, 33(7): 1214-1218. (in Chinese)
[17] BUSTIN S A, BENES V, GARSON J A, HELLEMANS J, HUGGETT J, KUBISTA M, MUELLER R, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622.
doi: 10.1373/clinchem.2008.112797 pmid: 19246619
[18] GRUYS K J, WALKER M C, SIKORSKI J A. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry, 1992, 31(24): 5534-5544.
doi: 10.1021/bi00139a016
[19] 巩元勇, 郭书巧, 束红梅, 倪万潮, 帕尔哈提·买买提, 沈新莲, 徐鹏, 张香桂, 郭琪. 植物莽草酸途径EPSPS蛋白的分子进化和基因结构分析. 植物学报, 2015, 50(3): 295-309.
doi: 10.3724/SP.J.1259.2015.00295
GONG Y Y, GUO S Q, SHU H M, NI W C, PAERHATI M M T, SHEN X L, XU P, ZHANG X G, GUO Q. Analysis of molecular evolution and gene structure of EPSPS protein in plant shikimate pathway. Chinese Bulletin of Botany, 2015, 50(3): 295-309. (in Chinese)
doi: 10.3724/SP.J.1259.2015.00295
[20] 陈颖芳, 周安琪, 朱宏波. 甘薯草甘膦抗性基因EPSPS克隆和序列分析. 西北植物学报, 2020, 40(1): 35-42.
CHEN Y F, ZHOU A Q, ZHU H B. Cloning and expression analysis of glyphosate resistance gene EPSPS in sweet potato. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(1): 35-42. (in Chinese)
[21] 常恒祯, 常江, 战俊澎, 杨馨, 郭珣, 刘益辛, 邹德颖, 任洪林. 包涵体重组蛋白不同纯化方法的比较. 中国生物制品学杂志, 2021, 34(7): 862-867.
CHANG H Z, CHANG J, ZHAN J P, YANG X, GUO X, LIU Y X, ZOU D Y, REN H L. Comparison of various methods for purification of recombinant inclusion body protein. Chinese Journal of Biologicals, 2021, 34(7): 862-867. (in Chinese)
[22] 金元昌, 刘利, 苏晓艳, 李景鹏, 李会东, 周建红. IPTG诱导浓度、时间及温度对重组促性腺激素释放激素基因表达的影响. 黑龙江畜牧兽医, 2006(8): 17-19.
JIN Y C, LIU L, SU X Y, LI J P, LI H D, ZHOU J H. Effect of induce concentration, time and temperature of IPTG on the expression of the GST-GnRH/TRS gene. Heilongjiang Animal Science and Veterinary Medicine, 2006(8): 17-19. (in Chinese)
[23] 黄兆峰, 白薇薇, 周欣欣, 黄红娟, 姜翠兰, 张朝贤, 魏守辉. 田旋花EPSPS基因表达特征及草甘膦对其表达的影响. 植物保护, 2019, 45(4): 104-107.
HUANG Z F, BAI W W, ZHOU X X, HUANG H J, JIANG C L, ZHANG C X, WEI S H. Expression pattern of EPSPS gene and the effect of glyphosate on its expression in field bindweed. Plant Protection, 2019, 45(4): 104-107. (in Chinese)
[24] 刘峰, 王天康, 吴立威, 阮盈盈. 黄瓜EPSPS基因的克隆及其组织特异性表达分析. 分子植物育种, 2022, 20(3): 750-755.
LIU F, WANG T K, WU L W, RUAN Y Y. Cloning and expression analysis of EPSPS gene from cucumber. Molecular Plant Breeding, 2022, 20(3): 750-755. (in Chinese)
[25] CHEN J, CUI H, MA X, MA Y, LI X. Distribution differences in the EPSPS gene in chromosomes between glyphosate-resistant and glyphosate-susceptible goosegrass (Eleusine indica). Weed Science, 2020, 68(1): 33-40.
[26] ZHANG C, FENG L, TIAN X S. Alterations in the 5′ untranslated region of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene influence EPSPS overexpression in glyphosate-resistant Eleusine indica. Pest Management Science, 2018, 74(11): 2561-2568.
doi: 10.1002/ps.5042
[27] GHEREKHLOO J, FERNANDEZ-MORENO P T, ALCANTARA-DE LA CRUZ R, SANCHEZ-GONZALEZ E, CRUZ-HIPOLITO H E, DOMINGUEZ-VALENZUELA J A, DE PRADO R. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Scientific Reports, 2017, 7(1): 6702.
doi: 10.1038/s41598-017-06772-1 pmid: 28751654
[28] BECKIE H J, ASHWORTH M B, FLOWER K C. Herbicide resistance management: Recent developments and trends. Plants, 2019, 8(6): 161.
doi: 10.3390/plants8060161
[29] CAO J, WU Q, WAN F, GUO J, WANG R. Reliable and rapid identification of glyphosate-resistance in the invasive weed Amaranthus palmeri in China. Pest Management Science, 2022, 78(6): 2173-2182.
doi: 10.1002/ps.6843
[30] CORBETT C A, TARDIF F J. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: A review. Pest Management Science, 2006, 62(7): 584-597.
doi: 10.1002/ps.1219
[31] READE J P, COBB A H. New, quick tests for herbicide resistance in black-grass (Alopecurus myosuroides Huds) based on increased glutathione S-transferase activity and abundance. Pest Management Science, 2002, 58(1): 26-32.
doi: 10.1002/ps.411
[32] 赵静, 李志铭, 鲁力群, 贾鹏, 杨焕波, 兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别. 中国农业科学, 2020, 53(8): 1545-1555.
ZHAO J, LI Z M, LU L Q, JIA P, YANG H B, LAN Y B. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[5] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[6] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[7] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[8] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[9] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[10] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[11] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[12] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[13] FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines [J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
[14] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[15] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!