Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (6): 1253-1262.doi: 10.3864/j.issn.0578-1752.2022.06.016
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles
LONG YanBi1(),WU YunFei1,ZHANG Qian1,CHEN Peng1,2,PAN MinHui1,2(
)
[1] |
RITOSSA F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962,18:571-573.
doi: 10.1007/BF02172188 |
[2] |
TISSIÉRES A, MITCHELL H K, TRACY U M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 1974,84(3):389-398.
doi: 10.1016/0022-2836(74)90447-1 |
[3] |
LANDAIS I, POMMET J M, MITA K, NOHATA J, GIMENEZ S, FOURNIER P, DEVAUCHELLE G, DUONOR-CERUTTI M, OGLIASTRO M. Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene, 2001,271(2):223-231.
doi: 10.1016/S0378-1119(01)00523-6 |
[4] |
RICHTER K, HASLBECK M, BUCHNER J. The heat shock response: Life on the verge of death. Molecular Cell, 2010,40(2):253-266.
doi: 10.1016/j.molcel.2010.10.006 |
[5] |
MOGK A, BUKAU B. Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress and Chaperones, 2017,22(4):493-502.
doi: 10.1007/s12192-017-0762-4 |
[6] |
BAR-LAVAN Y, SHEMESH N, BEN-ZVI A. Chaperone families and interactions in metazoa. Essays in Biochemistry, 2016,60(2):237-253.
doi: 10.1042/EBC20160004 |
[7] |
DALIDOWSKA I, GAZI O, SULEJCZAK D, PRZYBYLSKI M, BIEGANOWSKI P. Heat shock protein 90 chaperones E1A early protein of adenovirus 5 and is essential for replication of the virus. International Journal of Molecular Sciences, 2021,22(4):2020.
doi: 10.3390/ijms22042020 |
[8] | ZHANG Y, ZHANG Y A, TU J. Hsp90 is required for snakehead vesiculovirus replication via stabilization the viral L protein. Journal of Virology, 2021,95(16):e00594-21. |
[9] |
JING L, BUCHNER J. Structure, function and regulation of the Hsp90 machinery. Biomedical Journal, 2013,36(3):106-117.
doi: 10.4103/2319-4170.113230 |
[10] |
WU P, SHANG Q, HUANG H, ZHANG S, ZHONG J, HOU Q, GUO X. Quantitative proteomics analysis provides insight into the biological role of Hsp90 in BmNPV infection in Bombyx mori. Journal of Proteomics, 2019,203:103379.
doi: 10.1016/j.jprot.2019.103379 |
[11] |
TSOU Y L, LIN Y W, CHANG H W, LIN H Y, SHAO H Y, YU S L, LIU C C, CHITRA E, SIA C, CHOW Y H. Heat shock protein 90: Role in enterovirus 71 entry and assembly and potential target for therapy. PLoS ONE, 2013,8(10):e77133.
doi: 10.1371/journal.pone.0077133 |
[12] |
IYER K, CHAND K, MITRA A, TRIVEDI J, MITRA D. Diversity in heat shock protein families: Functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress and Chaperones, 2021,26(5):743-768.
doi: 10.1007/s12192-021-01223-3 |
[13] |
MIYATA Y, YAHARA I. p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene, 2000,19(11):1477-1484.
doi: 10.1038/sj.onc.1203475 |
[14] |
MOMOSE F, NAITO T, YANO K, SUGIMOTO S, MORIKAWA Y, NAGATA K. Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. The Journal of Biological Chemistry, 2002,277(47):45306-45314.
doi: 10.1074/jbc.M206822200 |
[15] |
WYLER E, MOSBAUER K, FRANKE V, DIAG A, GOTTULA L T, ARSIE R, KLIRONOMOS F, KOPPSTEIN D, HONZKE K, AYOUB S, et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience, 2021,24(3):102151.
doi: 10.1016/j.isci.2021.102151 |
[16] | 张凤霞. 棉铃虫Hsp90、胸腺素和丝氨酸蛋白酶抑制因子在发育中的表达模式与激素调控[D]. 济南: 山东大学, 2010. |
ZHANG F X. Expression patterns and hormonal regulation of Hsp90, thymosin and serine protease inhibitors in the development of Helicoverpa armigera[D]. Ji’nan: Shandong University, 2010. (in Chinese) | |
[17] |
CHEN B, WAGNER A. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. BMC Evolutionary Biology, 2012,12:25.
doi: 10.1186/1471-2148-12-25 |
[18] |
MCCLELLAN A J, XIA Y, DEUTSCHBAUER A M, DAVIS R W, GERSTEIN M, FRYDMAN J. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell, 2007,131(1):121-135.
doi: 10.1016/j.cell.2007.07.036 |
[19] |
SHANG Q, WU P, HUANG H L, ZHANG S L, TANG X D, GUO X J. Inhibition of heat shock protein 90 suppresses Bombyx mori nucleopolyhedrovirus replication in B. mori. Insect Molecular Biology, 2020,29(2):205-213.
doi: 10.1111/imb.v29.2 |
[20] |
PAN M H, CAI X J, LIU M, LV J, TANG H, TAN J, LU C. Establishment and characterization of an ovarian cell line of the silkworm, Bombyx mori. Tissue and Cell, 2010,42(1):42-46.
doi: 10.1016/j.tice.2009.07.002 |
[21] |
BASCOM R A, SRINIVASAN S, NUSSBAUM R L. Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. The Journal of Biological Chemistry, 1999,274(5):2953-2962.
doi: 10.1074/jbc.274.5.2953 |
[22] |
SATOH A, WANG Y, MALSAM J, BEARD M B, WARREN G. Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic, 2003,4(3):153-161.
doi: 10.1034/j.1600-0854.2003.00103.x |
[23] |
DIAO A, RAHMAN D, PAPPIN D J, LUCOCQ J, LOWE M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. The Journal of Cell Biology, 2003,160(2):201-212.
doi: 10.1083/jcb.200207045 |
[24] |
PINOT M, GOUD B, MANNEVILLE J B. Physical aspects of COPI vesicle formation. Molecular Membrane Biology, 2010,27(8):428-442.
doi: 10.3109/09687688.2010.510485 |
[25] |
SOHDA M, MISUMI Y, YAMAMOTO A, NAKAMURA N, OGATA S, SAKISAKA S, HIROSE S, IKEHARA Y, ODA K. Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport. Traffic, 2010,11(12):1552-1566.
doi: 10.1111/tra.2010.11.issue-12 |
[26] |
TONGMUANG N, YASAMUT U, SONGPRAKHON P, DECHTAWEWAT T, MALAKAR S, NOISAKRAN S, YENCHITSOMANUS P T, LIMJINDAPORN T. Coat protein complex I facilitates dengue virus production. Virus Research, 2018,250:13-20.
doi: 10.1016/j.virusres.2018.03.021 |
[27] |
LIMJINDAPORN T, WONGWIWAT W, NOISAKRAN S, SRISAWAT C, NETSAWANG J, PUTTIKHUNT C, KASINRERK W, AVIRUTNAN P, THIEMMECA S, SRIBURI R, SITTISOMBUT N, MALASIT P, YENCHITSOMANUS P T. Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochemical and Biophysical Research Communications, 2009,379(2):196-200.
doi: 10.1016/j.bbrc.2008.12.070 |
[28] |
HOWE C, GARSTKA M, AL-BALUSHI M, GHANEM E, ANTONIOU A N, FRITZSCHE S, JANKEVICIUS G, KONTOULI N, SCHNEEWEISS C, WILLIAMS A, ELLIOTT T, SPRINGER S. Calreticulin-dependent recycling in the early secretory pathway mediates optimal peptide loading of MHC class I molecules. The EMBO Journal, 2009,28(23):3730-3744.
doi: 10.1038/emboj.2009.296 |
[29] |
WU Y, DING Y, ZHENG X, LIAO K. The molecular chaperone Hsp90 maintains Golgi organization and vesicular trafficking by regulating microtubule stability. Journal of Molecular Cell Biology, 2020,12(6):448-461.
doi: 10.1093/jmcb/mjz093 |
[30] | 高囡囡, 鲍岚. 微管蛋白的翻译后修饰及功能研究. 生命科学, 2015,27(3):363-373. |
GAO N N, BAO L. Post-translational modification and function of tubulin. Chinese Bulletin of Life Sciences, 2015,27(3):363-373. (in Chinese) | |
[31] |
TIAN G, HUANG Y, ROMMELAERE H, VANDEKERCKHOVE J, AMPE C, COWAN N J. Pathway leading to correctly folded β-tubulin. Cell, 1996,86(2):287-296.
doi: 10.1016/S0092-8674(00)80100-2 |
[32] |
JIN S, PAN L, LIU Z, WANG Q, XU Z, ZHANG Y Q. Drosophila tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development, 2009,136(9):1571-1581.
doi: 10.1242/dev.029983 |
[33] |
METIVIER M, GALLAUD E, THOMAS A, PASCAL A, GAGNE J P, POIRIER G G, CHRETIEN D, GIBEAUX R, RICHARD-PARPAILLON L, BENAUD C, GIET R. Drosophila tubulin-specific chaperone E recruits tubulin around chromatin to promote mitotic spindle assembly. Current Biology, 2021,31(4):684-695.
doi: 10.1016/j.cub.2020.11.009 |
[34] |
HYDE J L, GILLESPIE L K, MACKENZIE J M. Mouse norovirus 1 utilizes the cytoskeleton network to establish localization of the replication complex proximal to the microtubule organizing center. Journal of Virology, 2012,86(8):4110-4122.
doi: 10.1128/JVI.05784-11 |
[35] | DIGIUSEPPE S, LUSZCZEK W, KEIFFER T R, BIENKOWSKA- HABA M, GUION L G, SAPP M J. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(22):6289-6294. |
[36] | LOFTUS M S, VERVILLE N, KEDES D H. A conserved leucine zipper motif in gammaherpesvirus ORF52 is critical for distinct microtubule rearrangements. Journal of Virology, 2017,91(17):e00304-17. |
[37] |
CHEN S, LIU M, HUANG H, LI B, ZHAO H, FENG X Q, ZHAO H P. Heat stress-induced multiple multipolar divisions of human cancer cells. Cells, 2019,8(8):888.
doi: 10.3390/cells8080888 |
[38] |
LI S, WANG Y, HOU D, GUAN Z, SHEN S, PENG K, DENG F, CHEN X, HU Z, WANG H, WANG M. Host factor heat-shock protein 90 contributes to baculovirus budded virus morphogenesis via facilitating nuclear actin polymerization. Virology, 2019,535:200-209.
doi: 10.1016/j.virol.2019.07.006 |
[1] | CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567. |
[2] | DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384. |
[3] | YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838. |
[4] | ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190. |
[5] | WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799. |
[6] | Jie HU,XinYi WANG,Fei WANG. Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(21): 4188-4196. |
[7] | JIANG YaMing, DONG ZhanQi, CHEN TingTing, HU Nan, DONG FeiFan, HUANG Liang, TANG LiangTong, PAN MinHui. Identification the key areas of Bombyx mori Nucleopolyhedrovirus LEF-11 self-interaction [J]. Scientia Agricultura Sinica, 2017, 50(20): 4028-4035. |
[8] | GAO Rui, LI ChunLin, TONG XiaoLing, CAO MingYa, SHI MeiNing, XU AnYing, LU Cheng, DAI FangYin. Insight into Genetic Basis of Bombyx mori Resistant Strains with Resistance to BmNPV by Molecular Linkage Analysis [J]. Scientia Agricultura Sinica, 2017, 50(1): 195-204. |
[9] | REN Yue, HAN Ying-Yan, LI Ting, HAO Jing-Hong, FAN Shuang-Xi. Molecular Cloning and Expression Analysis of Heat-Shock-Protein90 (LsHsp90) Gene from Leaf Lettuce (Lactuca sativa L.) Under Heat Shock [J]. Scientia Agricultura Sinica, 2013, 46(16): 3514-3522. |
[10] | GUO Rui, LIU Wei-Xing, PAN Zhong-Hua, XUE Ren-Yu, CAO Guang-Li, ZHU Yue-Xiong, GONG Cheng-Liang. Construction of Recombinant BmNPV Infecting Ecotropis oblique [J]. Scientia Agricultura Sinica, 2012, 45(16): 3288-3296. |
[11] | Ke-Ping CHEN . Studies on protein of the occlusion-derived virus of Bombyx mori L. Nucleopolyhedrovirus using two-dimensional gel electrophoresis and mass spectrometry [J]. Scientia Agricultura Sinica, 2008, 41(7): 2215-2218 . |
[12] | . The inhibitory effects of the corresponding dsRNA of gp64 gene on the replication and multiplication of BmNPV [J]. Scientia Agricultura Sinica, 2007, 40(12): 2882-2887 . |
|