Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 1-14.doi: 10.3864/j.issn.0578-1752.2017.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of an SSR-Based Standard Fingerprint Database for Corn Variety Authorized in China

WANG FengGe1, YANG Yang1, YI HongMei1, ZHAO JiuRan1, REN Jie1, WANG Lu1, GE JianRong1, JIANG Bin2, ZHANG XianChen2, TIAN HongLi1, HOU ZhenHua1   

  1. 1Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097; 2Beijing TodaySoft Inc., Beijing 100083
  • Received:2016-07-11 Online:2017-01-01 Published:2017-01-01

Abstract:

【Objective】 It is of great importance to construct a shareable high-quality crop variety standard DNA fingerprint database for effectively managing the huge number of known varieties.【Method】 Based on fluorescence capillary electrophoresis detection platforms and the plant variety DNA fingerprint database management system, a database containing 3 998 maize authorized accessions was built with 40 SSR primer pairs. Multi-laboratories and multi-detecting platforms were used to conduct the quality evaluation of the database.【Result】 Allele frequency distribution graphs of the 40 corn primers were plotted as characteristic spectrums of each primer, which played the role of the similarity of reference samples in the database construction. A decuplet fluorescent capillary electrophoresis combination was formed and a set of system default PANEL was established in the SSR analyzer. Statistics were conducted on the experimental conditions of the database construction. Of the total samples, 61% of them were subjected to two group independent trials and 33% of them were subjected to three group independent trials. Each sample had 2-5 sets of original experimental data and the corresponding fingerprint maps. The accumulated loss and variable sites of the final built standard fingerprint database accounted for only 0.2%, the data integrity reached 99.8%. The assessment results in different laboratories and different electrophoresis platforms showed that the SSR fingerprint data obtained high agreement on the same electrophoresis fluorescence detection platform, but showed a certain bias in different electrophoretic detection platforms. In order to realize the sharing of SSR fingerprint data in different laboratories, a unified fluorescent primer, analysis software and electrophoresis detection platform were needed. Overall pairwise comparisons were conducted on all the fingerprint data, the results showed that there existed a relative big overall difference among the certification varieties of corn in China. Percentage of different sites among the authorized varieties was mainly concentrated between 80% and 95% (accounted for 78.28%), the percentage of different sites with more than 50% reached 99.21%, and less than 20% of only 0.09%. The average hybrid rate of the authorized varieties reached 64% and mainly concentrated between 50% and 80% (accounted for 89%). By using the corn variety standard fingerprint matching service platform (URL: http: //www.maizedna.org/), a shared fingerprint database is realized. 【Conclusion】 A standard procedure in constructing crop variety SSR fingerprint database was formed in this study and the SSR fingerprint database was constructed with a scale of nearly 4 000 corn authorized varieties. Through joint multi-laboratory comparison tests, the accuracy of database building and the sharing property of database were ensured. A service platform website for corn variety standard fingerprint matching was established in this study, thus achieving sharing of corn authorized variety fingerprint database in national seed identification system, and providing an important reference for other crop species in building high-quality SSR fingerprint database.

Key words: maize, variety identification, DNA fingerprint database, SSR

[1]    杨扬, 王凤格, 赵久然, 刘亚维. 中国玉米品种审定现状分析. 中国农业科学, 2014, 47(22): 4360-4370.
Yang Y, Wang F G, Zhao J R, Liu Y W. Analysis of the current situation of accredited maize varieties in China. Scientia Agricultura Sinica,, 2014, 47(22): 4360-4370. (in Chinese)
[2]    赵久然, 王凤格, 易红梅, 田红丽, 杨扬. 我国玉米品种标准DNA指纹库构建研究及应用进展. 作物杂志, 2015, 2: 1-6.
Zhao J R, Wang F G, Yi H M, Tian H L, Yang Y. Progress of construction of chinese maize varieties standard DNA fingerprint database. Crops, 2015, 2: 1-6. (in Chinese)
[3]    Van Inghelandt D V, Melchinger A E, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 2010, 120(7): 1289-1299.
[4]    Wang F G, Tian H L, Zhao J R, Yi H M, Wang L, Song W. Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica, 2011, 56(1): 7-17.
[5]    庄杰云, 施勇烽, 应杰政, 鄂志国, 曾瑞珍, 陈洁, 朱智伟. 中国主栽水稻品种微卫星标记数据库的初步构建. 中国水稻科学, 2006, 20(5): 460-468.
Zhuang J Y, Shi Y F, Ying J Z, E Z G, Zeng R Z, Chen J, Zhu Z W. Construction and testing of primary microsatellite database of major rice varieties in china. Chinese Journal of Rice Science, 2006, 20(5): 460-468. (in Chinese)
[6]    Röder M, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke R, Vosman B. Construction and analysis of a microsatellite-based database of European wheat varieties. Theoretical and Applied Genetics, 2002, 106(1): 67-73.
[7]    赖运平, 王丽容, 何巧林, 张浙峰, 张新明, 堵苑苑, 余毅. 甘蓝型油菜核心SSR引物筛选及指纹图谱构建. 西南农业学报, 2014, 27(6): 2290-2298.
Lai Y P, Wang L R, He Q L, Zhang Z F, Zhang X M, Du Y Y, Yu Y. Screening of SSR core primers and fingerprinting construction of Brassica napus L.. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2290-2298. (in Chinese)
[8]    Reid A, Hof L, Felix G, Rücker B, Tams S, Milczynska E, Esselink D, Uenk G, Vosman B, Weitz A. Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica, 2011, 182(2): 239-249.
[9]    Bredemeijer G, Cooke R, Ganal M, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Röder M, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B. Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theoretical and Applied Genetics, 2002, 105(6): 1019-1026.
[10]   Smulders M, Esselink D, Voorrips R E, Vosmana B. Analysis of a database of DNA profiles of 734 hybrid tea rose varieties. Acta Horticulturae, 2009, 836: 169-174.
[11]   Cipriani G, Spadotto A, Jurman I, Gaspero G D, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theoretical and Applied Genetics, 2010, 121(8): 1569-1585.
[12]   GEORGE M L, REGALADO E, LI W, CAO M, DAHLAN M, PABENDON M, WARBURTON M L, XIANCHUN X, HOISINGTON D. Molecular characterization of Asian maize inbred lines by multiple laboratories. Theoretical and Applied Genetics, 2004, 109(1): 80-91.
[13]   Côté M, Leduc L, Reid A. Evaluation of simple sequence repeat (SSR) markers established in europe as a method for the identification of potato varieties grown in canada. American Journal of Potato Research, 2013, 90(4): 340-350.
[14]   马琳, 刘海珍, 陆徐忠, 倪金龙, 张小娟, 杨剑波. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013, 35: 231-239.
Ma L, Liu H Z, Lu X Z, Ni J L, Zhang X J, Yang J B. Establishment molecular identity of 130 Brassica napus varieties. Chinese Journal of Oil Crop Sciences, 2013, 35: 231-239. (in Chinese)
[15]   王黎明, 焦少杰, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 142 份甜高粱品种的分子身份证构建. 作物学报, 2011, 37(11): 1975-1983.
WANG L M, JIAO S J, JIANG Y X, YAN H D, SU D F, SUN G Q. Establishment of molecular identity in 142 sweet sorghum varieties. Acta Agronomica Sinica, 2011, 37(11): 1975-1983. (in Chinese)
[16]   Wang F G, Zhao J R, Dai J R, Yi H M, Kuang M, Sun Y M, Yu X Y, Guo J L, Wang L. Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high throughput automated genotyping in maize. Chinese Science Bulletin, 2007, 52(2): 215-223.
[17]   王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航. 中国328个玉米品种(组合)SSR标记遗传多样性分析. 中国农业科学, 2014, 47(5): 856-864.
Wang F G, Tian H L, Zhao J R, Wang L, Yi H M, Song W, Gao Y Q, Yang G H. Diversity analysis of 328 maize varieties (hybridized combinations) using SSR markers. Scientia Agricultura Sinica, 2014, 47(5): 856-864. (in Chinese)
[18]   王立新, 李云伏, 常利芳, 黄岚, 李宏博, 葛玲玲, 刘丽华, 姚骥, 赵昌平. 建立小麦品种DNA指纹的方法研究. 作物学报, 2007, 33(10): 1738-1740.
Wang L X, Li Y F, Chang L F, Huang L, Li H B, Ge L L, Liu L H, Yao J, Zhao C P. Method of ID constitution for wheat cultivars. Acta Agronomica Sinica, 2007, 33(10): 1738-1740. (in Chinese)
[19]   徐雷锋, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 刘春, 明军. 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报, 2014, 41(10): 2055-2064.
XU L F, GE L, YUAN S X, REN J F, YUAN Y Y, LI Y N, LIU C, MING J. Using the luorescent labeled SSR markers to establish molecular identity of lily germplasms. Acta Horticulturae Sinica, 2014, 41(10): 2055-2064. (in Chinese)
[20]   胡振帮, 高运来, 齐照明, 蒋洪蔚, 刘春燕, 辛大伟, 胡国华, 潘校成, 陈庆山. 作物分子身份证构建软件ID analysis的编制. 中国农业科学, 2016,49(12): 2255-2266.
Hu Z B, Gao Y L, Qi Z M, Jiang H W, Liu C Y, Xin D W, Hu G H, Pan X C, Chen Q S. Software development of -ID analysis for crop molecular identity construction. Scientia Agricultura Sinica, 2016, 49(12): 2255-2266. (in Chinese)
[21]   Bär W, Brinkmann B, Budowle B, Carracedo A, Gill  P, Lincoln P, Mayr W, Olaisen B. DNA recommendations- Further report of the DNA Commission of the ISFH regarding the use of short tandem repeat systems. Forensic Science International, 1997, 87(3): 181-184.
[22]   陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014, 40(5): 823-829.
Lu X Z, Ni J L, Li L, Wang X F, Ma H, Zhang X J, Yang J B. Construction of rice variety indentity using SSR fingerprint and commodity information. Acta Agronomica Sinica, 2014, 40(5): 823-829. (in Chinese)
[23]   高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID的构建. 作物学报, 2009, 35(2): 211-218.
GAO Y L, ZHU R S, LIU C Y, LI W F, JIANG H W, LI C D, YAO B C, HU G H, CHEN Q S. Establishment of molecular id in soybean varieties in Heilongjiang, China. Acta Agronomica Sinica, 2009, 35(2): 211-218. (in Chinese)
[24]   Yang X, Xu Y, Shah T, Li H, Han Z, Li J, Yan J. Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica, 2011, 139: 1045-1054.
[25]   Beadling C, Neff T L, Heinrich M C, Rhodes K, Thornton M, Leamon J, Andersen M, Corless C L. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping.  Journal of Molecular Diagnostics Jmd, 2013, 15(2): 171-176.
[26]   Guichoux E, Lagache L, Wagner S, Chaumeil P, Le´ Ger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit R J. Current trends in microsatellite genotyping. Molecular Ecology Resources, 2011, 11(4): 591-611.
[27]   郑永胜, 张晗, 王东建, 孙加梅, 王雪梅, 段丽丽, 李华, 王玮, 李汝玉. 基于荧光检测技术的小麦品种SSR鉴定体系的建立. 中国农业科学, 2014, 47(19): 3725-3735.
Zheng Y S, Zang H, Wang D J, Sun J M, Wang X M, Duan L L, Li H, Wang W, Li R Y. Development of a wheat variety identification system based on fluorescently labeled SSR markers. Scientia Agricultura Sinica, 2014, 47(19): 3725-3735. (in Chinese)
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!