Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (13): 2514-2523.doi: 10.3864/j.issn.0578-1752.2016.13.007

;

• PLANT PROTECTION • Previous Articles     Next Articles

Differential Physiological and Biochemical Responses of Cucumber to the Feeding by Bemisia tabaci B and Q Biotypes

LIU Ming-yang, LEI Cai-yan, LI Jing-jing, LU Shao-hua, BAI Run-e, TANG Qing-bo, YAN Feng-ming   

  1. College of Plant Protection, Henan Agricultural University, Zhengzhou 450002
  • Received:2015-11-20 Online:2016-07-01 Published:2016-07-01

Abstract: 【Objective】B (Middle East-Asia Minor 1) and Q (Mediterranean) biotypes, two cryptic species of Bemisia tabaci species complex, are important agricultural pests. Extensive applications of insecticides for control of the pests have resulted in pesticide resistance in the whiteflies, have endangered ecological safety and human health. Implementation of safe pest management strategy is therefore becoming very important and urgent. Utilization of plant defense is one of the important components in integrated pest management. The objective of this study is to investigate the differential responses of nutrients and defensive enzymes in cucumber induced by the feeding of B. tabaci B and Q biotypes and thereby to elucidate the physiological and biochemical mechanism underlying defence responses of cucumber to B. tabaci.【Method】Adults of B. tabaci B and Q biotypes and cucumber plants (var. Bojie-I) from the laboratory cultures were used for the experiments. The cucumber plants at four-leaf stage were respectively used to feed 200 adults of B. tabaci B and Q biotypes, with healthy plants as controls, and the contents of nutrients (soluble sugar and soluble protein) and polyphenolic contents, activity of phenylalanine ammonialyase (PAL), the enzyme of defensive substance biosynthesis, and activity of protective enzymes in cucumber were determined after continuously feeding for 1, 3, 5, 7 and 9 days by B and Q biotypes of B. tabaci. 【Result】Within the experimental period, the contents of soluble sugar and protein in cucumber increased after 3 d by B. tabaci B biotype, but decreased after 1 d by B. tabaci Q biotype, compared to those in controls. The contents of polyphenols and activity of PAL, the key enzyme in its biosynthesis pathway, increased after infested both by B and Q biotypes, with higher activities to Q biotype feeding. The activity of superoxide dismutase (SOD) and catalase (CAT) increased and the activity of peroxidase (POD) decreased after feeding by B biotype, while the activities of SOD increased and the activity of POD and CAT decreased after feeding by Q biotype. 【Conclusion】Differential changes of nutrients and defensive enzymes in cucumber after the feeding of B. tabaci B and Q biotypes were found in the present study. Both B and Q biotypes of B. tabaci were able to induce the synthesis of defensive substance polyphenols, and increased the content of polyphenols in cucumber; but there were differences in inducing the contents of nutrients and the activities of protective enzymes, i.e., more nutrients in cucumber by B biotype feeding, while higher activities of defensive enzymes by Q biotype feeding. Those different changes in induced physiological and biochemical responses in plants to the herbivore may result from the difference in host plant adaptability between B and Q biotypes of B. tabaci. These results provide a basis for pest management strategies, especially for utilization of plant defense as the main control tactic, so as to target different biotypes of B. tabaci on different host plants.

Key words: Bemisia tabaci, B and Q biotypes, feeding induction, cucumber, nutrients, defensive substances, protective enzymes

[1]    Tay W T, Evans G A, Boykin L M, De Barro P J. Will the real Bemisia tabaci please stand up? PLoS ONE, 2012, 7(11): e50550.
[2]    Firdaus S, Vosman B, Hidayati N, Supena E D J, Visser R G F, van Heusden A W. The Bemisia tabaci species complex: Additions from different parts of the world. Insect Science, 2013, 20(6): 723-733.
[3]    Xu J, De Barro P J, Liu S S. Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 2010, 100(3): 359-366.
[4]    Lee W, Park J, Lee G S, Lee S, Akimoto S. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE, 2013, 8(5): e63817.
[5]    Liu S S, Barro P J D, Xu J, Luan J B, Zang L S, Ruan Y M, WAN F H. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 2007, 318(5857): 1769-1772.
[6]    Pan H P, Chu D, Ge D Q, Wang S L, Wu Q J, Xie W, Jiao X G, Liu B M, Yang X, Yang N, Su Q, Xu B Y, Zhang Y J.Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. Journal of Economic Entomology,2011,104(3): 978-985.
[7]    李洪冉, 刘馨, 刘小龙, 李长友, 沈长朋, 陶云荔, 褚栋. 田间系统调查表明山东省农区烟粉虱优势种为Q隐种. 昆虫学报, 2015, 58(7): 811-816.
Li H R, Liu X, Liu X L, Li C Y, Shen C P, Tao Y L, Chu D. Widespread displacement of the exotic whitefly species Bemisia tabaci B by Bemisia tabaci Q in fields in Shandong, China. Acta Entomologica Sinica, 2015, 58(7): 811-816. (in Chinese)
[8]    Chu C C, Margosan D A, Buckner J S, Freeman T P, Henneberry T J.Bemisia tabaci (Hemiptera: Aleyrodidae) nymph feeding in cotton (Gossypium hirsutum) leaves. Insect Science, 2007, 14(5): 375-381.
[9]    Polston J E, DeBarro P J, Boykin L M. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Management Science, 2014, 70(10): 1547-1552.
[10]   Bragard C, Caciagli P, Lemaire O, Lopez-Moya J J, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 2013, 51(2): 177-201.
[11]   汤德良, 王武刚, 谭维嘉, 郭予元. 棉铃虫危害诱导棉花内物质含量变化. 昆虫学报, 1997, 40(3): 332-333.
Tang D L, Wang W G, Tan W J, Guo Y Y. Changes of contents of some substances in cotton leaves induced by cotton bollworm Helicoverpa armigera (Hübner) attack. Acta Entomologica Sinica, 1997, 40(3): 332-333. (in Chinese)
[12]   戈峰, 李典谟, 邱业先, 王国红. 松树受害后一些化学物质含量的变化及其对马尾松毛虫种群参数的影响. 昆虫学报, 1997, 40(4): 337-342 .
Ge F, Li D M, Qiu Y X, Wang G H. Studies on the changes of some chemical in damaged pine needles and their effects on population parameters of pine caterpillar. Acta Entomologica Sinica, 1997, 40(4): 337-342. (in Chinese)
[13]   秦秋菊, 高希武. 昆虫取食诱导的植物防御反应. 昆虫学报, 2005, 48(1): 125-134.
Qin Q J, Gao X W. Plant defense responses induced by insect herbivory. Acta Entomologica Sinica, 2005, 48(1): 125-134. (in Chinese)
[14]   赵福庚, 何龙飞, 罗庆云. 植物逆境生理生态学. 北京: 化学工业出版社, 2004: 15-17.
Zhao F G, He L F, Luo Q Y. Plant Stress Physiology Ecology. Beijing: Chemical Industry Press, 2004: 15-17. (in Chinese)
[15]   张金锋, 薛庆中. 稻飞虱危害胁迫对水稻植株内主要保护酶活性的影响. 中国农业科学, 2004, 37(10): 1487-1491.
Zhang J F, Xue Q Z. The activity dynamics of main protective enzymes in rice plants under feeding stresses of Sogatella furcifera and Nilaparvata lugens. Scientia Agricultura Sinica, 2004, 37(10): 1487-1491. (in Chinese)
[16]   程璐, 贺春贵, 胡桂馨, 王森山, 张亚灵. 苜蓿斑蚜危害对5种苜蓿品种(系) PAL、POD、PPO 酶活性的影响. 植物保护, 2009, 35(6): 87-90.
Cheng L, He C G, Hu G X, Wang s S, Zhang Y L. The effects of Therioaphis trifolii on the activities of PAL, POD and PPO in five alfalfa varieties. Plant Protection, 2009, 35(6): 87-90. (in Chinese)
[17]   Zhang S Z, Zhang F, Hua B Z. Enhancement of phenylalanine ammonia lyase, polyphenoloxidase, and peroxidase in cucumber seedlings by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) infestation. Agricultural Sciences in China, 2008, 7(1): 82-87.
[18]   安志兰, 褚栋, 郭笃发, 范仲学, 陶云荔, 刘国霞, 张友军. 寄主植物对B型烟粉虱 (Bemisia tabaci)几种主要解毒酶活性的影响. 生态学报, 2008, 28(4): 1536-1543.
An Z L, Chu D, Guo D F, Fan Z X, Tao Y L, Liu G X, ZHANG Y J. Effects of host plant on activities of some detoxification enzymes in Bemisia tabaci biotype B. Acta Ecologica Sinica, 2008, 28(4): 1536-1543. (in Chinese)
[19]   Togni P H B, Laumann R A, Medeiros M A, Sujii E R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomologia Experimentalis et Applicata, 2010, 136(2): 164-173.
[20]   Shatters R G, Power C A, Boykin L M, He L, Mckenzie C L. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype- specific mitochondrial cytochromecoxidase I polymerase chain reaction primers. Journal of Economic Entomology, 2009, 102(2): 750-758.
[21]   李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 184-185, 194-195.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000: 184-185,194-195. (in Chinese)
[22]   吴晓敏, 韩利文, 王希敏, 陈维云, 杨官娥, 刘可春. 不同产地新鲜紫色马铃薯中花色苷及总酚的含量测定. 中国食物与营养, 2014, 20(5): 24-26.
Wu X M, Han L W, Wang X M, Chen W Y, Yang G E, Liu K C. Quantitative determination of anthocyanin and total phenols in fresh purple potato from different habitats. Food and Nutrition in China, 2014, 20(5): 24-26. (in Chinese)
[23]   Lee H J, Park K H, Shim J H, Park R D, Yong W K, Cho J Y. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. Journal of Microbiology and Biotechnology, 2005, 15(5): 1073-1079.
[24]   王学奎. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2006: 169.
Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment. 2nd ed. Beijing: Higher Education Press, 2006: 169. (in Chinese)
[25]   高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 211-213, 217.
Gao J F. Plant Physiological Experiment. Beijing: Higher Education Press, 2006: 211-213, 217. (in Chinese)
[26]   Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Science, 2001, 41(6): 1697-1705.
[27]   Chen M S. Inducible direct plant defense against insect herbivores: A review. Insect Science, 2008, 15(2): 101-114.
[28]   陈建明, 俞晓平, 程家安, 吕仲贤, 徐红星. 不同水稻品种受褐飞虱危害后体内生理指标的变化. 植物保护学报, 2003, 30(3): 225-231.
Chen J M, Yu X P, Cheng J A, Lü Z X, Xu H X. The change of physiological indexes in different varieties of rice damaged by Nilaparvata lugens (Stal). Acta Phytophylacica Sinica, 2003, 30(3): 225-231. (in Chinese)
[29]   覃金萍, 孙艳娟, 杨振德, 张增强, 李诺, 巨伟云. 灰同缘小叶蝉取食对寄主植物秋枫叶片生理生化的影响. 植物保护导刊, 2009, 29(12): 10-12.
Qin J P, Sun Y J, Yang Z D, Zhang Z Q, Li N, Ju W Y. Effect of feeding by Coloana cinerea Dworakowska on physiological and biochemical indexes of host plant Bischofia javanica leaves. China Plant Protection, 2009, 29(12): 10-12. (in Chinese)
[30]   卢少华, 李静静, 刘明杨, 白润娥, 汤清波, 闫凤鸣. 烟粉虱B型和Q型竞争能力的室内比较分析. 中国农业科学, 2015, 48(7): 1339-1347.
Lu S H, Li J J, Liu M Y, Bai R E, Tang Q B, Yan F M. Comparative analysis of the competitiveness between B and Q biotypes of Bemisia tabaci under laboratory conditions. Scientia Agricultura Sinica, 2015, 48(7): 1339-1347. (in Chinese)
[31]   林凤敏, 吴敌, 陆宴辉, 张永军, 王沫, 吴孔明. 棉花主要抗虫次生物质与其对绿盲蝽抗性的关系. 植物保护学报, 2011, 38(3): 202-208.
Lin F M, Wu D, Lu Y H, Zhang Y J, Wang M, Wu K M. The relationship between the main secondary metabolites and the resistance of cotton to Apolygus lucorum. Acta Phytophylacica Sinica, 2011, 38(3): 202-208. (in Chinese)
[32]   Fukasawa-Akada T, Kung S D, Watson J C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Molecular Biology, 1996, 30(4): 711-722.
[33]   王曼玲, 胡中立, 周明全, 宋运淳. 植物多酚氧化酶的研究进展. 植物学通报, 2005, 22(2): 215-222.
Wang M L, Hu L Z, Zhou M Q, Song Y C. Advances in research of polyphenol oxidase in plants. Chinese Bulletin of Botany, 2005, 22(2): 215-222. (in Chinese)
[34]   许秀淡, 郑少泉, 黄金松, 许家辉, 陈菁瑛刘惠玉. 角颊木虱危害对龙眼叶片活性氧代谢的影响. 福建农业学报, 2000, 15(3): 60-63.
Xu X D, Zheng S Q, Huang J S, Xu J H, Chen J Y, Liu H Y. Injurious effects by Coregenapsylla sinica on active oxygen metabolism in longyan leaves. Fujian Journal of Agricultural Sciences, 2000, 15(3): 60-63. (in Chinese)
[35]   孔海龙, 吕敏, 吴琳, 祝树德. Q型烟粉虱危害对不同品种辣椒保护酶活性及次生物质含量的影响. 应用昆虫学报, 2014, 51(6): 1553-1560.
Kong H L, Lü M, Wu L, Zhu S D. Effects of Bemisia tabaci damage on the protective enzyme activity and the secondary metabolite content of leaves in different pepper varieties. Chinese Journal of Applied Entomology, 2014, 51(6): 1553-1560. (in Chinese)
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[3] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[4] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[5] MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384.
[6] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[7] ZHAO Peng,LIU Ming,JIN Rong,CHEN XiaoGuang,ZHANG AiJun,TANG ZhongHou,WEI Meng. Effects of Long-Term Application of Organic Fertilizer on Carbon and Nitrogen Accumulation and Distribution of Sweetpotato in Fluvo- Aquic Soil Area [J]. Scientia Agricultura Sinica, 2021, 54(10): 2142-2153.
[8] REN Tao,GUO LiXuan,ZHANG LiMei,YANG XuKun,LIAO ShiPeng,ZHANG YangYang,LI XiaoKun,CONG RiHuan,LU JianWei. Soil Nutrient Status of Oilseed Rape Cultivated Soil in Typical Winter Oilseed Rape Production Regions in China [J]. Scientia Agricultura Sinica, 2020, 53(8): 1606-1616.
[9] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[10] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[11] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[12] ZHANG XinXin,SHI Lei,HE Gang,WANG ZhaoHui. Potential of Fertilizer Reduction and Benefits of Environment and Economic for Cereal Crops Production in Shaanxi Province [J]. Scientia Agricultura Sinica, 2020, 53(19): 4010-4023.
[13] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[14] WANG Li,WANG ZhaoHui,GUO ZiKang,TAO ZhenKui,ZHENG MingJun,HUANG Ning,GAO ZhiYuan,ZHANG XinXin,HUANG TingMiao. Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau [J]. Scientia Agricultura Sinica, 2020, 53(17): 3527-3540.
[15] LI BaoXin,YANG LiPing,LU YanLi,SHI XiaoXin,DU GuoQiang. Status of Soil Fertility in Main Grape Producing Areas of China [J]. Scientia Agricultura Sinica, 2020, 53(17): 3553-3566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!