Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4950-4960.doi: 10.3864/j.issn.0578-1752.2020.23.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks

MIAO JianJun(),PENG ZhongLi(),GAO YanHua,BAI Xue,XIE XinTing   

  1. College of Animal and Veterinary Sciences, Southwest Minzu University/Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu 610041
  • Received:2019-12-11 Accepted:2020-05-12 Online:2020-12-01 Published:2020-12-09
  • Contact: ZhongLi PENG E-mail:332779037@qq.com;leo3131@163.com

Abstract:

【Objective】This study investigated the effects of dietary small peptides on production performance, apparent digestibility of nutrients, blood indexes and expression of PepT1 mRNA in digestive tract of fattening yaks. 【Method】Health Maiwa male yaks (n=36, (180.98±20.57) kg body weight) were divided into 4 groups in a randomized complete block design, and each group had 9 male yaks. And they were fed 4 types of total mixed ratio diet with small peptides additions of 0, 0.75%, 1.50% and 2.25%, respectively. There was a pre-experimental period of 30 days, followed by a trial period of 80 days. Every yak’s weight was recorded before and after the trial begins, and the feed intake was also recorded every day. During the last week of the trial period, the fecal grab samples were collected for 3 consecutive days from each yak for routine analysis of nutrients. And five yaks were selected from each group to collect jugular vein blood and prepare serum to determine serum biochemical and immune indicators. At the end of the trial period, 5 yaks with blood collected were slaughtered, and the rumen, reticulum, omasum, abomasum, duodenum, jejunum, and ileum tissue were collected to determine the expression of PepT1 mRNA by using real time quantitative PCR. 【Result】(1) With the level of small peptides increasing, the dry matter intake, average daily gain and the feed gain ratio showed quadratic variation (P<0.05). The group with the best production performance was the 2.25% group. Compared with the control group and the 0.75% group, the dry matter intake and average daily gain were significant improved in the 2.25% group, but the feed gain ratio was significant decreased in the 2.25% group. (2) With increasing of small peptides levels, the degradation rate of neutral detergent fibre and acid detergent fibre linearly increased (P<0.01); the degradation rate of organic matter and crude protein presented quadratic variation (P<0.05). The 2.25% group had the highest digestibility. No significant difference existed between the degradation rate of calcium and phosphorus in four groups (P>0.05). (3) Across the range of small peptides supplementation levels, the content of alanine aminotransferase linearly decreased (P<0.05); the content of urea nitrogen linearly increased (P<0.05); the total protein showed linearly increased trend (P<0.10), and the content of aspartate aminotransferase showed quadratic variation (P<0.05). There were no significant effects on the content of alkaline phosphatase, glucose, cholesterol, triglyceride and immunoglobulins (IgG, IgA and IgM) in yak serum by adding different levels of small peptides. (4) The expression of PepT1 mRNA in the digestive tract of yaks from the highest to the lowest was the jejunum, ileum, duodenum, reticulum, omasum, rumen, and abomasum, while the expression of PepT1 mRNA in jejunum was significantly higher than that of the other gastrointestinal tracts (P<0.05). The expression of PepT1 mRNA in abdomen was significantly lower than those of jejunum and ileum. No significant difference was found between the expression of PepT1 mRNA in ileum, duodenum, reticulum, omasum, and rumen. With increasing of small peptides levels from 0 to 2.25%, the expression of PepT1 mRNA in rumen, reticulum and jejunum linearly increased (P<0.05), and small peptides levels had no significant effect on the expression of PepT1 mRNA in omasum, abomasum, duodenum and ileum (P>0.05). 【Conclusion】 In conclusion, dietary small peptides could improve the production performance, apparent digestibility of nutrients, liver function of fattening yaks, and promote the transport and absorption of small peptides in the digestive tract. In this research, the appropriate level of dietary small peptides of yaks was 2.25%.

Key words: small peptides, fattening yaks, production performance, apparent digestibility of nutrients, blood indexes, expression of PepT1 mRNA

Table 1

Composition and content of amino acid in the peptide (DM basis, %)"

氨基酸 Amino acid 含量Content(%) 氨基酸 Amino acid 含量 Content(%)
缬氨酸Valine 2.27 赖氨酸Lysine 2.52
亮氨酸Leucine 2.76 组氨酸Histidine 1.28
异亮氨酸Isoleucine 1.60 苏氨酸Threonine 1.40
蛋氨酸Methionine 0.66 甘氨酸Glicine 2.27
胱氨酸Cystine 0.85 丙氨酸Alanine 1.86
苯丙氨酸Phenylalanine 2.25 脯氨酸Proline 1.94
酪氨酸Tyrosine 1.21 丝胺酸Serine 1.75
色氨酸Tryptophan 0.44 谷氨酸Glutamic 4.20
精氨酸Arginine 4.74 天冬酰胺Asparagine Acid 9.55

Table 2

The diet composition and nutrient components (DM basis, %)"

原料
Ingredient
小肽添加水平 Addition levels of small peptide
0 0.75% 1.50% 2.25%
玉米Corn 35.00 35.00 35.00 35.00
豆粕Soybean meal 7.00 7.00 7.00 7.00
玉米酒精糟及可溶物 Distiller dried grains with solubles 4.70 3.95 3.20 2.45
磷脂粉Phosphatide powder 0.75 0.75 0.75 0.75
碳酸钙 CaCO3 0.60 0.60 0.60 0.60
氯化钠NaCl 0.50 0.50 0.50 0.50
碳酸氢钠 NaHCO3 0.50 0.50 0.50 0.50
预混料1) Premix 0.95 0.95 0.95 0.95
小肽 Small peptide 0 0.75 1.50 2.25
发酵酒糟 Fermented distillers,grains 25.00 25.00 25.00 25.00
玉米秸秆青贮Corn straw silage 25.00 25.00 25.00 25.00
合计Total 100.00 100.00 100.00 100.00
营养水平2) Nutrient levels
干物质 DM 69.62 69.63 69.65 69.64
增重净能 Neg (MJ·kg--1) 4.63 4.63 4.64 4.64
粗蛋白 CP 14.54 14.56 14.60 14.63
粗脂肪 EE 3.05 3.04 3.05 3.06
中性洗涤纤维 NDF 30.04 29.94 29.87 29.76
酸性洗涤纤维 ADF 16.68 16.59 16.48 16.38
钙 Ca 0.65 0.64 0.64 0.64
总磷 P 0.52 0.51 0.51 0.51

Table 3

Primer sequence"

目的基因 Target gene 引物名称 Primer name 引物序列 Primer sequence 片段大小 Fragment size(bp)
Pep T1 PepT1_2F TGTCGCTGTCCATCGTCTA 78
PepT1_2R GGTTGAAGTCCGTGAGGTC
18S 18S_1F CAACACGGGAAACCTCACC 118
18S_1R CCCAGACAAATCGCTCCAC

Table 4

Effects of dietary small peptides levels on production performance of fattening yaks"

项目
Items
小肽添加水平Addition levels of small peptide PP value
0 0.75% 1.50% 2.25% T L Q
初重IBW (kg) 180.67±27.98 180.22±28.51 181.25±33.38 181.78±27.97 1.000 0.919 0.994
末重FBW (kg) 230.00±34.54 227.56±35.25 238.75±26.74 257.11±31.77 0.224 0.060 0.110
平均日增重ADG (kg·d-1) 0.64±0.15B 0.61±0.13B 0.72±0.13B 0.91±0.09A 0.001 <0.001 <0.001
干物质采食量DMI (kg·d-1) 4.84±0.59b 4.79±0.41b 5.12±0.44ab 5.48±0.56a 0.024 0.005 0.009
料重比F/G 8.07±1.72a 8.32±1.86a 7.35±1.59ab 5.95±0.72b 0.014 0.004 0.005

Table 5

Effects of dietary small peptides levels on nutrients apparent digestibility of fattening yaks (%)"

项目
Items
小肽添加水平Addition levels of small peptide PP value
0 0.75% 1.50% 2.25% T L Q
有机物OM 64.91±0.86ab 63.34±2.25b 65.71±1.03a 67.13±1.55a 0.011 0.016 0.010
蛋白质CP 51.30±3.61b 50.71±3.81b 53.29±1.42ab 54.11±2.25a 0.025 0.006 0.019
酸性洗涤纤维ADF 47.11±2.60B 49.19±3.40B 53.04±3.83A 54.02±1.86A 0.002 <0.001 <0.001
中性洗涤纤维NDF 50.34±1.12C 51.55±1.52C 55.03±2.83B 58.62±0.76A 0.001 <0.001 <0.001
钙Ca 58.08±4.53 57.01±4.39 60.21±4.60 59.50±3.63 0.374 0.373 0.680
磷P 53.61±5.75 53.61±0.82 54.39±5.10 54.07±8.51 0.996 0.853 0.981

Table 6

Effects of dietary small peptides levels on serum metabolites of fattening yaks"

项目
Items
小肽添加水平Addition levels of small peptide PP value
0 0.75% 1.50% 2.25% T L Q
谷丙转氨酶ALT (U/L) 39.88±5.54 35.60±3.14 33.95±1.45 32.37±3.87 0.099 0.013 0.039
谷草转氨酶AST (U/L) 80.45±13.02a 79.50±12.66a 59.00±5.64b 63.05±8.35b 0.024 0.011 0.040
碱性磷酸酶ALP (U/L) 157.23±28.74 138.25±15.03 134.80±21.98 135.48±15.87 0.480 0.192 0.284
总蛋白TP (g·L-1) 70.60±6.95 73.43±1.82 76.10±2.79 75.98±2.87 0.322 0.068 0.165
尿素氮UN (mmol·L-1) 5.15±0.86 5.53±0.61 5.70±0.68 6.44±0.85 0.148 0.022 0.070
葡萄糖GLU (mmol·L-1) 4.63±0.21 4.63±0.18 4.66±0.36 4.86±0.39 0.686 0.294 0.471
胆固醇CHO (mmol·L-1) 2.14±0.37 2.05±0.13 1.92±0.35 1.88±0.14 0.790 0.298 0.587
甘油三酯TG (mmol·L-1) 0.33±0.05 0.33±0.10 0.32±0.03 0.29±0.07 0.763 0.312 0.548

Table 7

Effects of dietary small peptides levels on serum immunity indexes of fattening yaks"

项目
Items (mg·mL-1)
小肽添加水平Addition levels of small peptide PP value
0 0.75% 1.50% 2.25% T L Q
IgG 13.78±1.37 14.01±1.79 14.40±1.20 14.39±1.49 0.899 0.481 0.744
IgA 6.95±2.57 6.64±1.73 6.10±0.64 7.24±1.54 0.871 0.810 0.723
IgM 1.56±0.19 1.49±0.18 1.79±0.09 1.59±0.18 0.196 0.539 0.506

Fig. 1

Tissue expression characteristics of PepT1 mRNA in the digestive tract of fattening yaks Columns with different letter mean significant difference(P<0.05)"

Table 8

Effects of dietary small peptides levels on the expression of PepT1 mRNA in the digestive tract of fattening yaks"

项目
Items
小肽添加水平Addition levels of small peptide PP value
0 0.75% 1.50% 2.25% T L Q
瘤胃Rumen 0.79±0.31b 0.86±0.19b 1.31±0.92b 2.44±1.07a 0.028 0.006 0.009
网胃Reticulum 0.82±0.39 1.06±0.52 1.82±0.96 2.31±1.20 0.101 0.011 0.043
瓣胃Omasum 1.44±0.80 1.37±0.34 1.42±0.46 1.28±0.36 0.979 0.739 0.944
皱胃Abomasum 1.15±0.69 0.72±0.25 0.83±0.39 0.75±0.29 0.882 0.552 0.768
十二指肠Duodenum 2.19±0.32 3.31±0.97 2.14±0.59 2.08±0.56 0.318 0.546 0.469
空肠Jejunum 8.61±2.92 9.17±3.80 14.73±4.95 16.74±5.09 0.109 0.016 0.059
回肠Ileum 3.98±0.71 4.57±0.91 4.97±0.89 4.39±0.37 0.739 0.602 0.537
[1] 王彩红 . 小肽转运载体2在奶牛乳腺上皮细胞Met-Met摄取中的作用及其调控机制研究[D]. 杭州: 浙江大学, 2018.
WANG C H . The regulation of PepT1 on the uptake of Met-Met in bovine mammary epithelial cells[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[2] 张军民 . 谷氨酰胺对早期断奶仔猪肠道的保护作用及其机理研究[D]. 北京: 中国农业科学院, 2000.
ZHANG J M . Studies on the protective effect and mechanism of glutamine on intestines in early-weaned piglets[D]. Beijing: Chinese Academy of Agrieulutarl Sciences, 2000. (in Chinese)
[3] REN Z H, YUAN W, DENG H D, DENG J L, DAN Q X, JIN H T, TIAN C L, PENG X, LIANG Z, GAO S, XU S H, LI G, HU Y . Effects of antibacterial peptide on cellular immunity in weaned piglets. Food and Agricultural Immunology, 2015,26(5):682-689.
doi: 10.1080/09540105.2015.1007448
[4] 王恬, 傅永明, 吕俊龙, 蒋厚生, 李亚平, 陈才勇, 於朝梅 . 小肽营养素对断奶仔猪生产性能及小肠发育的影响. 畜牧与兽医, 2003,35(6):4-8.
WANG T, FU Y M, LV J L, JIANG H S, LI Y P, CHEN C Y, YU C M . Effects of mini-peptides on the growth performance and the development of small intestines in weaning piglets. Animal Husbandry&Veterinary Medicine, 2003,35(6):4-8. (in Chinese)
[5] 蒋培红, 初汉平, 许腾 . 小肽对断奶獭兔生长性能和免疫性能的影响. 中国饲料, 2007(8):29-31.
JIANG P H, CHU H P, XU T . The effect of small peptide on growth performance and function of weaning Rex Rabbit. China Feed, 2007(8):29-31. (in Chinese)
[6] 宋增廷 . 谷胱甘肽对肉羊瘤胃发酵、生长及肉质调控作用的研究[D]. 大庆: 黑龙江八一农垦大学, 2008.
SONG Z T . studies on manipulation of rumen fermentation, growth and meat quality in fattening lambs by adding Glutathione[D]. Daqing: Heilongjiang Bayi Agricultural University, 2008. (in Chinese)
[7] 祝平 . 植物小肽对断奶仔猪生产性能影响及其机理的研究[D]. 泰安: 山东农业大学, 2007.
ZHU P . Research of plant mini-peptides on performance and mechanism of weaned piglets[D]. Taian: Shandong Agricultural University, 2007. (in Chinese)
[8] 吴丹丹, 滕乐邦, 栾正庆, 孙国强 . 小肽对奶牛瘤胃微生物蛋白产量、产奶性能和氮排泄的影响. 动物营养学报, 2016,28(4):1090-1098.
WU D D, TENG L B, LUAN Z Q, SUN G Q . Effects of small peptides on ruminal microbial protein production, milk performance and nitrogen excretion of dairy cows. Chinese Journal of Animal Nutrition, 2016,28(4):1090-1098. (in Chinese)
[9] 卜艳玲, 陈静, 李建涛, 程奇, 李海东, 刘显军 . 饲粮中添加肠杆菌肽对断奶仔猪生产性能和血清生化指标的影响. 动物营养学报, 2018,30(2):696-706.
BU Y L, CHEN J, LI J T, CHENG Q, LI H D, LIU X J . Effects of enterobacitracin supplementation on performance and serum biochemical indices of weaning piglets. Chinese Journal of Animal Nutrition, 2018,30(2):696-706. (in Chinese)
[10] GILBERT E R, LI H, EMMERSON D A, WEBB K E, WONG E A . Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. The American Journal of Physiology, 2008,138(2):262-271.
[11] SPANIER B . Transcriptional and functional regulation of the intestinal peptide transporter PEPT1. The Journal of Physiology, 2014,592(5):871-879.
doi: 10.1113/jphysiol.2013.258889 pmid: 23959672
[12] PAN Y, WONG E A, BLOOMQUIST J R, WEBB K E . Expression of a cloned ovine gastrointestinal peptide transporter (oPepT1) in Xenopus oocytes induces uptake of oligopeptides in vitro. Journal of Nutrition, 2001,131(4):1264-1270.
doi: 10.1093/jn/131.4.1264
[13] 李燕, 林雪彦, 姜运良, 苏鹏程, 王中华 . 应用RT-PCR方法检测牛消化道各段Ⅰ型肽载体mRNA差异表达的研究. 动物营养学报, 2008,20(2):183-190.
LI Y, LIN X Y, JIANG Y L, SU P C, WANG Z H . A study on the relative expression of peptide transporterI mRNA in different parts of bovine gastrointestinal tract by RT-PCR. Chinese Journal of Animal Nutrition, 2008,20(2):183-190. (in Chinese)
[14] 许庆彪 . 奶牛瓣胃上皮细胞对小肽的吸收机制及小肽转运载体1的特征研究[D]. 杭州: 浙江大学, 2015.
XU Q B . The mechanism of small peptides absorption in bovine omasal epithelial cells and charactrization of bovine peptide transporter 1[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[15] 孙雅君 . 绵羊胃肠道游离氨基酸与小肽分布及其转运载体相关基因表达的研究[D]. 杨凌: 西北农林科技大学, 2017.
SUN Y J . Study on distribution of free amino acid and small peptide and the expression of related transporter genes in gastrointestinal tract of sheeps[D]. Yangling: Northwest Agriculture & Forestry University, 2017. (in Chinese)
[16] 张吉顺, 刘念, 谈姣嫣, 张春雷, 房兴堂, 李勇, 李忠昌 . 湖羊消化道各段T1R1、T1R3及PepT1基因表达水平的分析. 畜牧与兽医, 2017,49(2):51-56.
ZHANG J S, LIU N, TAN J Y, ZHANG C L, FANG X T, LI Y, LI Z C . Expression levels of T1R1 / T1R3 and Pep T1 genes in the gastrointestinal tract of Hu Sheep. Animal Husbandry & Veterinary Medicine, 2017,49(2):51-56. (in Chinese)
[17] 张丽英 . 饲料分析及质量检测技术. 第2版. 北京: 中国农业大学出版社, 2003.
ZHANG L Y. Feed Analysis and Quality Testing Technology. 2nd ed. Beijing: China Agricultural University Press, 2003. (in Chinese)
[18] VAN SOEST P J, ROBERTSON J B, LEWIS B A . Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2 pmid: 1660498
[19] 程茂基 . 绵羊瘤胃内寡肽的产生、降解、吸收、流通与微生物摄取规律的研究[D]. 呼和浩特: 内蒙古农业大学, 2000.
CHENG M J . Study on production, degradation, absorption, outflow and microbial uptake of oligopeptides in the rumen of sheep[D]. Huhehot: Inner Mongolia Agricultural University, 2000. (in Chinese)
[20] 李琍, 丁角立 . 肽对体外混合培养瘤胃微生物发酵和生长影响的研究. 畜牧兽医学报, 2000,31(2):113-119.
LI L, DING J L . Effects of peptides on the fermentation and growth of mixed ruminal microorganisms in vitro. Acta Veterinaria et Zootechnica Sinica, 2000,31(2):113-119. (in Chinese)
[21] 娄丽平 . 不同氮源对绵羊氮代谢和瘤胃发酵的影响[D]. 哈尔滨: 东北农业大学, 2007.
LOU L P . The effect of different nitrogen sources on nitrogen metabolism and rumen fermentation in sheep[D]. Harbin: Northeast Agricultural University, 2007. (in Chinese)
[22] 王文娟 . 瘤胃灌注小肽对肉牛瘤胃发酵与营养物质消化代谢的影响[D]. 泰安: 山东农业大学, 2011.
WANG W J . Effects of small peptides on rumen fermentation and digestion of nutrition on beef cattle[D]. Taian: Shandong Agricultural University, 2011. (in Chinese)
[23] 孙海元 . 小肽和半胱胺对生长肥育猪生产性能的影响及机理研究[D]. 邯郸: 河北工程大学, 2013.
SUN H Y . Effect of peptide and cysteamine on growth performance and mechanism in growing pigs[D]. Handan: Hebei University of Engineering, 2013. (in Chinese)
[24] 史晓雪, 牛占宇, 幸超, 张三润, 闫婉姝, 张润厚 . 饲粮中添加梧桐子油和罗格列酮对绵羊生产性能、血清激素和生化指标的影响. 动物营养学报, 2017,29(12):4495-4502.
SHI X X, NIU Z Y, XING C, ZHANG S R, YAN W S, ZHANG R H . Effects of dietary supplementation of sycamore seed oil and rosiglitazone on production performance serum hormone and biochemical indexes of sheep. Chinese Journal of Animal Nutrition, 2017,29(12):4495-4502. (in Chinese)
[25] SWANSON K C, FREETLY H C, FERRELL C L . Nitrogen balance in lambs fed low-quality brome hay and infused with differing proportions of casein in the rumen and abomasum. Journal of Animal Science, 2004,82(2):502-507.
doi: 10.2527/2004.822502x pmid: 14974549
[26] 张迪, 张鹤亮, 张维金, 杨利, 崔家军, 马龙宝, 梁瑞 . 小肽对种公猪精液品质的影响. 黑龙江畜牧兽医, 2017(5):88-91.
ZHANG D, ZHANG H L, ZHANG W J, YANG L, CUI J J, MA L B, LIANG R . Effects of small peptide on the quality of boar semen. Heilongjiang Animal Science and Veterinary Medicine, 2017(5):88-91. (in Chinese)
[27] 王锦荣, 占今舜, 郭静, 赵国琦 . 不同精粗比对犊牛组织中PepT1和PHT1及PHT2表达的影响. 中国畜牧杂志, 2015,51(21):24-28.
WANG J R, ZHAN J S, GUO J, ZHAO G Q . Effects of concentrate to forage ratio on expression of PepT1, PHT2 and PHT2 mRNA in tissues of calf. Chinese Journal of Animal Science, 2015,51(21):24-28. (in Chinese)
[28] 石福于 . 牦牛小肽转运载体PepT1的克隆及表达调控研究[D]. 兰州: 兰州大学, 2017.
SHI F Y . Cloning and expression regulation of small peptide transporter Pep T1 in yak[D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
[29] DIRIENZO D B . Free and peptide amino acid fluxes across the mesenteric and non-mesenteric viscera of sheep and calves[D]. Blacksburg: Viginia Polytechnic Institute and State University, 1992.
[30] SEAL C J, PARKER D S . Effect of intraruminal propionic acid infusion on metabolism of mesenteric- and portal-drained viscera in growing steers fed a forage diet: II. Ammonia, urea, amino acids, and peptides. Journal of Animal Science, 1996,74(1):245.
doi: 10.2527/1996.741245x pmid: 8778105
[31] 卢艳娟 . 日粮能量蛋白水平对滩羊主要营养素转运载体mRNA表达的影响[D]. 杨凌:西北农林科技大学, 2017.
LI Y J . Effects of diets with different energy and protein levels on mRNA expression of nutrient transporters in Tan sheep[D]. Yangling: Northwest Agriculture & Forestry University, 2017. (in Chinese)
[32] 黄薪蓓, 许庆彪, 刘建新 . 肠道氨基酸和小肽转运载体的基因表达、影响因素与分子调控机制. 动物营养学报, 2015,27(1):21-27.
doi: 10.3969/j.issn.1006-267x.2015.01.004
HUANG X P, XU Q B, LIU J X . Gene expression, influence factors and molecular regulation of amino acid and peptide transporters in intestine. Chinese Journal of Animal Nutrition, 2015,27(1):21-27. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2015.01.004
[1] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[2] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[3] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[4] XIN Hai-rui, PAN Xiao-hua, BI Ye, XIONG Ben-hai, JIANG Lin-shu. Effects of Lighting Regimes on Production Performance, Carcass Performance and Anti-Oxidant Capacity of the Blood in Peking Ducks [J]. Scientia Agricultura Sinica, 2016, 49(23): 4638-4645.
[5] JIA Zhen-Wei. Recent Advances in Research of the Expression and Role of C-Type Natriuretic Peptide as a Regulator in Control of Animal Ovary Performance [J]. Scientia Agricultura Sinica, 2014, 47(2): 403-410.
[6] MA Yan-Fen, DU Rui-Ping, GAO Min. Effect of Heat Stress on Dairy Goat Performance and Rumen Epithelial Cell Morphology [J]. Scientia Agricultura Sinica, 2013, 46(21): 4486-4495.
[7] CHEN Sai-Juan, LIU Ya-Juan, WANG Yuan-Yuan, CHEN Dan-Dan, LIU Tao, GU Zi-Lin. Effect of Lycium Barbarum Polysaccharide on Production Performance and Serum Biochemical Indexes in Lactating Rabbit [J]. Scientia Agricultura Sinica, 2013, 46(10): 2168-2174.
[8] WANG Bao-Wei, WANG Na, GE Wen-Hua, YUE Bin, ZHANG Ming-Ai, SHI Xue-Ping. Effects of Different Selenium Sources on Production Performance, Slaughter Performance, Meat Quality, Immune and Antioxidant in the Early Goose [J]. Scientia Agricultura Sinica, 2011, 44(14): 3016-3026 .
[9] XU Bao-Hua, LIU Zhi-Yong, ZENG Zhi-Jiang. Effect of Royal Jelly on Growth and Reproduction Performance of Male Rabbits [J]. Scientia Agricultura Sinica, 2011, 44(10): 2154-2160.
[10] LI Yu,ZHANG Jun-min,MENG Yan-li,ZHAO Qing-yu,DENG Li-kang
. Effect of De-oiled DDGS on Production Performance, Egg Quality and Serum Biochemical Indexes in Laying Hens
[J]. Scientia Agricultura Sinica, 2010, 43(16): 3433-3439 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!