Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (12): 2333-2342.doi: 10.3864/j.issn.0578-1752.2016.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION • Previous Articles     Next Articles

Effects of Two Biochars on Red Soil Aggregate Stability and Microbial Community

He Yu-ting1, Wang Chang-quan1, Shen Jie1, Li Bin2, Li Bing1, Chen Lin1,3, Pan Xing-bing1,4   

  1. 1Collage of resources, Sichuan Agricultural University, Chengdu 611130
    2Sichuan Provincial Company of China National Tobacco Corporation, Chengdu 610041
    3Sichuan Qionglai Agriculture and Forestry Bureau, Qionglai 611530, Sichuan
    4Panzhihua Company of Sichuan Provincial Tobacco Corporation, Panzhihua 617000, Sichuan
  • Received:2016-01-22 Online:2016-06-16 Published:2016-06-16

Abstract: 【Objective】 The objective of this paper is to study the influences of biochar derived from tobacco stems and mulberry branches on red soil aggregate stability and microbial community structure abundance, provide high quality modified materials for cultivating structural stability of soil aggregate. 【Method】 Soil samples were incubated for four months by adding four different rates (1%, 2%, 4% and 6%) of tobacco stems biochar (Y1, Y2, Y4, and Y6) and mulberry branches biochar (S1, S2, S4, and S6), and non-biochar control (CK). Then, sieving methods were used to detect the distribution of aggregates (>2, 1-2, 0.5-1, 0.25-0.5, <0.25 mm) and stability (estimated by the mean weight diameter: MWD, >0.25 mm soil aggregates: R0.25 and percentage of aggregate disruption: PAD). The numbers of soil fungi, bacteria and actinomycetes were measured by microbial dilution plate counting cultivation method. 【Result】 Water-stable aggregates were changed significantly after biochar additions. Compared with CK, Y4 and S4 treatments significantly increased the 0.5-1 mm fractions by 61.0% and 43.6%; Y1 and S2 treatments significantly increased the 0.25-0.5 mm fractions by 40.8% and 27.1%, while the <0.25 mm aggregates reduced by 9.2% and 8.4%. Compared to CK, both Y2 and S2 enhanced the values of MWD more than 10% and Y1 and S2 treatments increased R0.25by 31.4% and 28.7%, respectively. Accordingly, the PDA in the Y6 and S6 treatments were decreased by 22.0% and 18.2%, respectively. Furthermore, biochar additions significantly increased the soil fungi, actinomycetes and bacteria community. The Y4 and S4 treatments resulted in a richest amount of microbial community. In the tobacco stems treatments, a significant correlation existed between the aggregate stability index (MWD, R0.25) with the fungi (R2=0.89, P=0.030; R2=0.86, P=0.039) and actinomycetes (R2=0.87, P=0.035; R2=0.90, P=0.021). Moreover, PAD significantly reduced with the increased fungi (P<0.01), and actinomycetes and bacteria (P<0.05).【Conclusion】The biochar derived from tobacco stems and mulberry branches enhanced the formation of macro-aggregate (0.25-1 mm), soil aggregates stability and abundance of soil microbial communities. The effect of tobacco stems biochar was better than that of mulberry branches, and the appropriate application is 2%-4%.

Key words: biochar, red soil, soil aggregate stability, soil microbial

[1]    黄昌勇, 徐建明. 土壤学. 北京: 中国农业出版社, 2010: 121-127.
Huang C Y, Xu J M. Soil Science. Beijing: China Agriculture Press, 2010: 121-127. (in Chinese)
[2]    窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418.
Dou S, Li K, Guan S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese)
[3]    Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil,1995, 170: 75-86.
[4]    史奕, 陈欣, 沈善敏. 有机胶结形成土壤团聚体的机理及理论模型. 应用生态学报, 2002, 13(11): 1495-1498.
Shi Y, Chen X, Shen S M. Mechanisms of organic cementing soil aggregate formation and its theoretical models. Chinese Journal of Applied Ecology, 2002, 13(11): 1495-1498. (in Chinese)
[5]    李娜, 韩晓增, 尤孟阳, 许玉芝. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632.
Li N, Han X Z, You M Y, Xu Y Z. Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 2013, 22(9): 1625-1632. (in Chinese)
[6]    赵其国. 我国红壤的退化问题. 土壤, 1995(6): 281-285.
Zhao Q G. Degradation of red soil in China. Soils, 1995(6): 281-285. (in Chinese)
[7]    Sohi S P, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Advances in Agronomy, 2010, 105(1): 47-82.
[8]    Zhang L, Xu C C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 2010, 51(5): 969-982.
[9]    Demisie W, LIU Z Y, ZHANG M K. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena, 2014, 121: 214-221.
[10]   丁艳丽, 刘杰, 王莹莹. 生物炭对农田土壤微生物生态的影响研究进展. 应用生态学报, 2013, 24(11): 3311-3317.
Ding Y L, Liu J, Wang Y Y. Effects of biochar on microbial ecology in agriculture soil: A review. Chinese Journal of Applied Ecology, 2013, 24(11): 3311-3317. (in Chinese)
[11]   米会珍, 朱利霞, 沈玉芳, 李世清. 生物炭对旱作农田土壤有机碳及氮素在团聚体中分布的影响. 农业环境科学学报, 2015, 34(8): 1550-1556.
Mi H Z, Zhu L X, Shen Y F, Li S Q. Biochar effects on organic carbon and nitrogen in soil aggregates in semiarid farmland. Journal of Agro-Environment Science, 2015, 34(8): 1550-1556. (in Chinese)
[12]   Obia A, Mulder J, Martinsen V, Cornelissen G, Borresen T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 2016, 155: 35-44.
[13]   侯晓娜, 李慧, 朱刘兵, 韩燕来, 唐政, 李忠芳, 谭金芳, 张水清. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响. 中国农业科学, 2015, 48(4): 705-712.
Hou X N, Li H, Zhu L B, Han Y L, Tang Z, Li Z F, Tan J F, Zhang S Q. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution. Scientia Agricultura Sinica, 2015, 48(4): 705-712. (in Chinese)
[14]   Grunwald D, Kaiser M, Ludwig B. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil and Tillage Research, 2016, http://dx.doi.org/10.1016/j.still.2016.01.002.
[15]   Novak J M, Lima I, Xing B S, Gaskin J W, Steiner C, Das K C, AHMEDNA M, REHRAH D, WATTS D W, BUSSCHER W J, SCHOMBERG H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 2009, 3(1): 195-206.
[16]   Obia A, Mulder J, Martinsen V, Cornelissen G, Børresen T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 2016, 155: 35-44.
[17]   Zhang G S, Chan K Y, Oates A, Heenan D P, Huang G B. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil and Tillage Research, 2007, 91(1): 122-128.
[18]   Franzluebbers A J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil and Tillage Research, 2002, 66(2): 197-205.
[19]   宫阿都, 何毓蓉. 金沙江干热河谷典型区 (云南)退化土壤的结构性与形成机制. 山地学报, 2001,19(3): 213-219.
Gong A D, He Y R. The structure feature and formation mechanism of the degraded soil in dry-hot valley region of the Jinsha river, Yunnan Province, China. Journal of Mountain Science, 2001, 19(3): 213-219. (in Chinese)
[20]   Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota-A review. Soil Biology and Biochemistry, 2011, 43(9): 1812-1836.
[21]   李明, 李忠佩, 刘明, 江春玉, 吴萌. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学, 2015, 48(7): 1361-1369.
Li M, Li Z P, Liu M, Jiang C Y, Wu M. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil. Scientia Agricultura Sinica, 2015, 48(7): 1361-1369. (in Chinese)
[22]   Sun D, Meng J, Xu E G, Chen W. Microbial community structure and predicted bacterial metabolic functions in biochar pellets aged in soil after 34 months. Applied Soil Ecology, 2016, 100: 135-143.
[23]   Liu Z X, Chen X M, Yan J, LI Q X, Zhang J B, Huang Q R. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 2014, 123: 45-51.
[24]   尹云峰, 高人, 马红亮, 杨玉盛, 李淑香, 刘燕萍. 稻草及其制备的生物质炭对土壤团聚体有机碳的影响. 土壤学报, 2013, 50(5): 909-913.
Yin Y F, Gao R, Ma H L, Yang Y S, Li S X, Liu Y P. Effects of application of rice straw and straw biochar on organic carbon in soil aggregates. Acta pedologica sinica, 2013, 50(5): 909-913. (in Chinese)
[25]   Covaleda S, Pajares S, Gallardo J F, Etchevers J D. Short-term changes in C and N distribution in soil particle size fractions induced by agricultural practices in a cultivated volcanic soil from Mexico. Organic Geochemistry, 2006, 37(12): 1943-1948.
[26]   赵斌, 何绍江. 微生物学实验. 北京: 科学出版社, 2010: 85-89.
Zhao B, He S J. Microbiology Experiment. Beijing: Science Press, 2010: 85-89. (in Chinese)
[27]   Filho C C, Lourenço A, Guimarães M D F, Fonseca I C B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 2002, 65(1): 45-51.
[28]   Sun F, Lu S. Biochars improve aggregate stability, water retention and pore-space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26-33.
[29]   何莉莉, 杨慧敏, 钟哲科, 公丕涛, 刘玉学, 吕豪豪, 杨生茂. 生物炭对农田土壤细菌群落多样性影响的PCR-DGGE分析. 生态学报, 2014, 34(15): 4288-4294.
He L L, Yang H M, Zhong Z K, Gong P T, Liu Y X, Lü H H, Yang S M. PCR-DGGE analysis of soil bacterium community diversity in farmland influenced by biochar. Acta Ecologica Sinica, 2014, 34(15): 4288-4294. (in Chinese)
[30]   李秀英, 赵秉强, 李絮花, 李燕婷, 孙瑞莲, 朱鲁生, 徐晶, 王丽霞, 李小平, 张夫道. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系. 中国农业科学, 2005, 38(8): 1591-1599.
Li X Y, Zhao B Q, Li X H, Li Y T, Sun R L, Zhu L S, Xu J, Wang L X, Li X P, Zhang F D. Effects of different fertilization systems on soil microbe and its relation to soil fertility. Scientia Agricultura Sinica, 2005, 38(8): 1591-1599. (in Chinese)
[31]   Soinne H, Hovi J, Tammeorg P, Turtola E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma, 2014, 219/220: 162-167.
[32]   盖霞普, 刘宏斌, 翟丽梅, 王洪媛. 玉米秸秆生物炭对土壤无机氮素淋失风险的影响研究. 农业环境科学学报, 2015, 34(2): 310-318.
Gai X P, Liu H B, Zhai L M, Wang H Y. Effects of corn-stalk biochar on inorganic nitrogen leaching from soil. Journal of Agro-Environment Science, 2015, 34(2): 310-318. (in Chinese)
[33]   尚杰, 耿增超, 赵军, 耿荣, 赵映翠. 生物炭对塿土水热特性及团聚体稳定性的影响. 应用生态学报, 2015, 26(7): 1969-1976.
Shang J, Geng Z C, Zhao J, Geng R, Zhao Y C. Effects of biochar on water thermal properties and aggregate stability of Lou soil. Chinese Journal of Applied Ecology, 2015, 26(7): 1969-1976. (in Chinese)
[34]   吴鹏豹, 解钰, 漆智平, 吴蔚东. 生物炭对花岗岩砖红壤团聚体稳定性及其总碳分布特征的影响. 草地学报, 2012, 20(4): 643-650.
Wu P B, Xie Y, Qi Z P, Wu W D. Effect of biochar on stability and total carbon distribution of aggregate in granitic laterite. Acta Agrestia Sinica, 2012, 20(4): 643-650. (in Chinese)
[35]   陈伟, 周波, 束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学, 2013, 46(18): 3850-3856.
Chen W, Zhou B, Shu H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of malus hupehensis rehd.. Scientia Agricultura Sinica, 2013, 46(18): 3850-3856. (in Chinese)
[36]   陈心想, 耿增超, 王森, 赵宏飞. 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报, 2014, 33(4): 751-758.
Chen X X, Geng Z C, Wang S, Zhao H F. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil. Journal of Agro-Environment Science, 2014, 33(4): 751-758. (in Chinese)
[37]   Rutigliano F A, Romano M, Marzaioli R, Baglivo I, Baronti S, Miglietta F, Castaldi S. Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 2013, 60(20): 9-15.
[38] Xu N, Tan G G, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure.European Journal of Soil Biology, 2016, 74: 1-8.
[39]   李清华, 王飞, 林诚, 何春梅, 李昱, 钟少杰, 林新坚. 长期施肥对黄泥田土壤微生物群落结构及团聚体组分特征的影响植物营养与肥料学报, 2015, 21(6): 1599-1606.
Lin Q H, Wang F, Lin C, He C M, Li Y, Zhong S J, Lin X J. Effects of long-term fertilization on soil microbial community structure and aggregate composition in yellow clayey paddy field. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1599-1606. (in Chinese)
[40]   Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 2002, 238(2): 325-333.
[41]   Peng S, Guo T, Liu G. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biology and Biochemistry, 2013, 57: 411-417.
[1] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[2] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[3] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[4] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[5] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[6] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[7] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[8] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[9] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[10] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[13] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[14] ZHAO XinZhou,ZHANG ShiChun,LI Ying,ZHENG YiMin,ZHAO HongLiang,XIE LiYong. The Characteristics of Soil Ammonia Volatilization Under Different Fertilizer Application Measures in Corn Field of Liaohe Plain [J]. Scientia Agricultura Sinica, 2020, 53(18): 3741-3751.
[15] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!