Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3294-3306.doi: 10.3864/j.issn.0578-1752.2020.16.008


Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County

WANG YuanPeng1,2(),HUANG Jing1,3,SUN YuXiang4,5,LIU KaiLou1,6,ZHOU Hu5,HAN TianFu1,DU JiangXue1,JIANG XianJun2,CHEN Jin7(),ZHANG HuiMin1,3()   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081
    2College of Resources and Environment, Southwest University, Chongqing 400715
    3National Observation Station of Qiyang Agri-Ecology System, Institute of Agricultural Resources and Regional Planning, CAAS, Qiyang 426182, Hunan
    4College of Resources and Environment, Hunan Agricultural University, Changsha 410128
    5Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    6Jiangxi Institute of Red Soil/National Engineering and Technology Research Center for Red Soil Improvement/Scientific Observational and Experimental Station of Arable Land Conservation in Jiangxi, Ministry of Agriculture, Nanchang 330046
    7Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs / National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 330200;
  • Received:2019-09-30 Accepted:2019-12-08 Online:2020-08-16 Published:2020-08-27
  • Contact: Jin CHEN,HuiMin ZHANG;;


【Objective】The aim of this study was to clarify the changes of soil nutrients and the current fertility level in the actual agricultural production in the typical county of red soil, which provided the basis for the improvement of red soil paddy soil. 【Method】Data of paddy field soil properties in Jinxian County of Jiangxi Province in 1982, 2008 and 2017 were obtained through data collection and field sampling analysis. Soil pH, organic matter, alkalide nitrogen, available phosphorus and available potassium were selected as soil comprehensive fertility evaluation factors. Firstly, the conventional statistics and differential analysis of various fertility factors in the three periods were carried out. Principal component analysis was used to find out the key factors of fertility differences in different periods and the weight was determined. The membership value of each fertility factor was obtained by membership function. The soil integrated fertility index was calculated by weight values and membership values. Finally, the spatial and temporal evolution characteristics of paddy field soil fertility in this region were explored based on GIS spatial distribution maps of soil fertility factors and integrated fertility index. 【Result】From 1982 to 2017, soil organic matter, alkalide nitrogen, available phosphorus and available potassium of paddy soil in Jinxian County increased in varying degrees, while soil pH value decreased. The average pH values of Jinxian County in the three periods of 1982, 2008 and 2017 were 5.9, 5.1 and 4.8, respectively, with an average annual decrease of 0.03 units. In the past 35 years, the overall decline rate of soil pH from west to southeast and northwest gradually decreased. In 2017, 99% of the paddy soil was at an acidic level (4.5-5.5). The average content of soil organic matter increased from 28.1 to 36.8 g·kg-1 in 35 years. The average annual increase rates of soil organic matter from 1982 to 2008 and from 2008 to 2017 were 0.21 and 0.31 g·kg-1, respectively. In 2017, the proportion of paddy fields with soil organic matter content between 30 and 40 g·kg-1 reached 94%. From 1982 to 2017, the increasing rate of soil organic matter decreased gradually from northeast to southwest. From 1982 to 2017, the average content of available phosphorus in soil increased from 7.0 to 32.1 mg·kg-1. In 2017, the paddy fields with soil available phosphorus content ranging from 20 to 40 mg·kg-1 were dominant in Jinxian County, accounting for 75%. The accumulation of available potassium in paddy soils was slow from 1982 to 2017. The annual average increase rates of available potassium in paddy soils from 1982 to 2008 and from 2008 to 2017 were 0.58 and 0.53 mg·kg-1, respectively. In 2017, the average content of available potassium in paddy soil in Jinxian County was 73.2 mg·kg-1. The alkalide nitrogen in paddy soils increased first and then slowly in the two stages of 1982-2008 and 2008-2017. The growth rates of the two stages were 1.24 and 0.29 mg·kg-1, respectively. From 1982 to 2017, the increase rate of soil alkalide nitrogen content in Jinxian County was higher in Southeast China and lower in Northwest China. The average values of the integrated fertility index of paddy soil in Jinxian County in 1982, 2008 and 2017 were 0.43, 0.50 and 0.55, respectively. The general scores of soil fertility factors in three periods were as follows: alkalide nitrogen>available phosphorus>pH>available potassium>organic matter (1982), pH>available phosphorus>available potassium>organic matter>alkalide nitrogen (2008), available potassium>available phosphorus>pH>alkalide nitrogen>organic matter (2017). 【Conclusion】 After 35 years of long-term cultivation, the soil fertility of rice fields in Jinxian County has been improved. At present, the paddy soil in Jinxian County still has problems such as excessive alkalide nitrogen, available potassium deficiency, and serious acidification of the soil. Soil alkalide nitrogen, pH and available potassium were the key factors for the spatial distribution of soil fertility in Jinxian County during the three periods of 1982, 2008 and 2017, respectively.

Key words: red soil, fertility evaluation, principal component analysis, spatiotemporal variability, Jinxian County

Table 1

Criteria for grading of soil nutrients"

等级 Grade pH 等级 Grade SOM (g·kg-1) AN (mg·kg-1) AP (mg·kg-1) AK (mg·kg-1)
强酸 Strong acid <4.5 一级 Grade 1 >40 >150 >40 >200
酸性 Acidity 4.5—5.5 二级 Grade 2 30—40 120—150 20—40 150—200
微酸 Slightly acid 5.5—6.5 三级 Grade 3 20—30 90—120 10—20 100—150
中性 Neutral 6.5—7.5 四级 Grade 4 10—20 60—90 5—10 50—100
碱性 Alkalinity >7.5 五级 Grade 5 6—10 30—60 3—5 30—50
六级 Grade 6 <6 <30 <3 <30

Table 2

The turning point of membership function"

转折点 Turning point pH SOM (g·kg-1) AN (mg·kg-1) AP (mg·kg-1) AK (mg·kg-1)
x1 4.5 20 100 5 50
x2 6.0 40 200 40 150
x3 7.0
x4 8.5

Fig. 1

Variation trend of soil fertility factors in paddy soil of Jinxian County"

Table 3

Results of principal component analysis and weights of fertility factors in Jinxian County in 1982, 2008 and 2017"

Fertility factor
主成分 Principal component 综合得分
1982 pH 0.160 0.012 -0.132 0.975 0.229 0.187
SOM 0.853 -0.156 -0.176 0.230 0.201 0.165
AN 0.854 0.265 0.192 0.019 0.331 0.271
AP 0.056 0.982 0.073 0.009 0.252 0.206
AK 0.011 0.076 0.980 -0.132 0.208 0.170
特征值 Eigenvalue 1.486 1.065 1.051 1.022
贡献率Contribution rate (%) 29.716 21.295 21.011 20.445
累计贡献率 Cumulative contribution rate (%) 29.716 51.011 72.022 92.468
2008 pH 0.876 0.258 0.161 -0.026 0.302 0.294
SOM -0.092 -0.082 0.062 0.985 0.189 0.184
AN -0.684 0.392 0.364 0.201 0.052 0.051
AP 0.017 0.063 0.975 0.056 0.254 0.247
AK 0.080 0.949 0.061 -0.097 0.230 0.224
特征值 Eigenvalue 1.251 1.131 1.116 1.025
贡献率 Contribution rate (%) 25.019 22.622 22.318 20.49
累计贡献率 Cumulative contribution rate (%) 25.019 47.641 69.959 90.449
2017 pH 0.905 -0.124 -0.024 0.132 0.222 0.210
SOM -0.091 -0.051 0.984 -0.089 0.169 0.160
AN 0.637 0.504 -0.213 -0.130 0.204 0.193
AP 0.062 0.050 -0.085 0.980 0.230 0.218
AK -0.038 0.937 -0.019 0.078 0.231 0.219
特征值 Eigenvalue 1.238 1.153 1.022 1.009
贡献率 Contribution rate (%) 24.762 23.062 20.448 20.189
累计贡献率 Cumulative contribution rate (%) 24.762 47.824 68.272 88.461

Fig. 2

Distribution map of soil fertility factors and integrated fertility index"

Table 4

Results of area ratio of soil fertility factors and integrated fertility index in different periods"

面积占比 Area ratio (%)
强酸Strong acid 酸性Acidity 微酸Slightly acid 中性Neutral 碱性Alkalinity
pH 1982 0 14 81 5 0
2008 0 93 7 0 0
2017 1 99 0 0 0

面积占比 Area ratio (%)
一级 Grade 1 二级 Grade 2 三级 Grade 3 四级 Grade 4 五级 Grade 5
SOM 1982 0 38 59 3 0
2008 2 81 14 3 0
2017 6 94 0 0 0
AN 1982 30 64 6 0 0
2008 100 0 0 0 0
2017 98 2 0 0 0
AP 1982 0 0 1 93 6
2008 3 79 18 0 0
2017 19 75 6 0 0
AK 1982 0 0 0 59 41
2008 0 0 4 86 10
2017 0 0 10 89 1
IFI 1982 0 0 7 86 7
2008 0 0 58 41 1
2017 0 21 78 1 0
[1] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应. 土壤学报, 2017,54(6):1471-1485.
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P. Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance. Acta Pedologica Sinica, 2017,54(6):1471-1485. (in Chinese)
[2] 柳开楼, 黄晶, 张会民, 韩天富, 黄庆海, 余喜初, 李大明, 胡惠文, 叶会财, 胡志华, 马常宝 . 薛彦东. 基于红壤稻田肥力与相对产量关系的水稻生产力评估. 植物营养与肥料学报, 2018,24(6):1425-1434.
LIU K L, HUANG J, ZHANG H M, HAN T F, HUANG Q H, YU X C, LI D M, HU H W, YE H C, HU Z H, MA C B. XUE Y D. Assessment of productivity of red paddy soil based on soil fertility and relative yield. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1425-1434. (in Chinese)
[3] 柳开楼, 李大明, 黄庆海, 余喜初, 叶会财, 徐小林, 胡惠文, 王赛莲. 红壤稻田长期施用猪粪的生态效益及承载力评估. 中国农业科学, 2014,47(2):303-313.
LIU K L, LI D M, HUANG Q H, YU X C, YE H C, XU X L, HU H W, WANG S L. Ecological benefits and environmental carrying capacities of red paddy field subjected to long-term pig manure amendments. Scientia Agricultura Sinica, 2014,47(2):303-313. (in Chinese)
[4] 张晗, 赵小敏, 朱美青, 欧阳真程, 郭熙, 匡丽花, 叶英聪, 黄聪, 汪晓燕, 李伟峰. 近30年南方丘陵山区耕地土壤养分时空演变特征——以江西省为例. 水土保持研究, 2018,25(2):58-71.
ZHANG H, ZHAO X M, ZHU M Q, OUYANG Z C, GUO X, KUANG L H, YE Y C, HUANG C, WANG X Y, LI W F. Characteristics of Spatiotemporal variability of cultivated soil nutrient in the southern hilly area of China in the past 30 years —a case study of Jiangxi Province. Research of Soil and Water Conservation, 2018,25(2):58-71. (in Chinese)
[5] 徐明岗, 张文菊, 黄绍敏. 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2015: 1059-1060.
XU M G, ZHANG W J, HUANG S M. Evolution of Soil Fertility in China. Beijing: China Agricultural Science and Technology Press, 2015: 1059-1060. (in Chinese)
[6] 焉莉, 王寅, 冯国忠, 高强. 吉林省农田土壤肥力现状及变化特征. 中国农业科学, 2015,48(23):4800-4810.
YAN L, WANG Y, FENG G Z, GAO Q. Status and change characteristics of farmland soil fertility in Jilin Province. Scientia Agricultura Sinica, 2015,48(23):4800-4810. (in Chinese)
[7] 王伟妮, 鲁剑巍, 鲁明星, 戴志刚, 李小坤. 水田土壤肥力现状及变化规律分析——以湖北省为例. 土壤学报, 2012,49(2):319-330.
WANG W N, LU J W, LU M X, DAI Z G, LI X K. Status quo and variation of soil fertility in paddy field—a case study of Hubei province. Acta Pedologica Sinica, 2012,49(2):319-330. (in Chinese)
[8] 漆智平, 魏志远, 李福燕, 唐树梅. 海南水稻土养分时空变异特征. 土壤通报, 2009,40(6):1292-1296.
QI Z P, WEI Z Y, LI F Y, TANG S M. Spatial-temporal variability of paddy soil nutrient in Hainan province. Chinese Journal of Soil Science, 2009,40(6):1292-1296. (in Chinese)
[9] 黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016,49(6):1132-1141.
doi: 10.3864/j.issn.0578-1752.2016.06.009
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016,49(6):1132-1141. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.06.009
[10] 成臣, 汪建军, 程慧煌, 罗亢, 曾勇军, 石庆华, 商庆银. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响. 土壤学报, 2018,55(1):247-257.
CHENG C, WANG J J, CHENG H H, LUO K, ZENG Y J, SHI Q H, SHANG Q Y. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double-cropping- rice system. Acta Pedologica Sinica, 2018,55(1):247-257. (in Chinese)
[11] 包耀贤, 黄庆海, 徐明岗, 于寒青. 长期不同施肥下红壤性水稻土综合肥力评价及其效应. 植物营养与肥料学报, 2013,19(1):74-81.
BAO Y X, HUANG Q H, XU M G, YU H Q. Assessment and effects of integrated soil fertility in red paddy soil under different long-term fertilization. Journal of Plant Nutrition and Fertilizer, 2013,19(1):74-81. (in Chinese)
[12] 高菊生, 徐明岗, 董春华, 黄晶, 曹卫东, 曾希柏, 文石林, 聂军. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响. 作物学报, 2013,39(2):343-349.
GAO J S, XU M G, DONG C H, HUANG J, CAO W D, ZENG X B, WEN S L, NIE J. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility. Acta Agronomica Sinica, 2013,39(2):343-349. (in Chinese)
[13] 张忠启, 于法展, 于东升, 胡丹. 红壤区土壤有机碳时间变异及合理采样点数量研究. 土壤学报, 2016,53(4):891-900.
ZHANG Z Q, YU F Z, YU D S, HU D. Temporal Variability of soil organic carbon and rational sample size in red soil region. Acta Pedologica Sinica, 2016,53(4):891-900. (in Chinese)
[14] 彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018,51(18):3614-3624.
PENG W F, LÜ W S, HUANG S, ZENG Y J, PAN X H, SHI Q H. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil. Scientia Agricultura Sinica, 2018,51(18):3614-3624. (in Chinese)
[15] 张忠启, 茆彭, 于东升, 徐莉. 近25年来典型红壤区土壤pH变化特征——以江西省余江县为例. 土壤学报, 2018,55(6):1545-1553.
ZHANG Z Q, MAO P, YU D S, XU L. Characteristics of soil pH variation in typical red soil region of south China in the past 25 years—a case study of Yujiang County. Jiangxi Province. Acta Pedologica Sinica, 2018,55(6):1545-1553. (in Chinese)
[16] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30-35; 56-57; 80-83; 106-107.
BAO S D. Soil Agricultural-Chemical Analysis. Beijing: China Agriculture Press, 2000: 30-35; 56-57; 80-83; 106-107. (in Chinese)
[17] 张敏, 袁辉. 拉依达(PauTa)准则与异常值剔除. 郑州工业大学学报, 1997(1):87-91.
ZHANG M, YUAN H. The Pau-Ta Criterion and rejecting the abnormal value. Journal of Zhengzhou University of Technology, 1997(1):87-91. (in Chinese)
[18] 康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016,49(11):2113-2125.
doi: 10.3864/j.issn.0578-1752.2016.11.008
KANG R F, REN Y, WU H J, ZHANG S X. changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016,49(11):2113-2125. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.11.008
[19] 徐建明, 张甘霖, 谢正苗, 吕晓男. 土壤质量指标与评价. 北京: 科学出版社, 2010: 72-73, 170-184,196-200.
XU J M, ZHANG G L, XIE Z M, LÜ X N. Indices and assessment of soil quality. Beijing: Science Press, 2010: 72-73, 170-184,196-200. (in Chinese)
[20] 全国土壤普查办公室. 中国土壤普查技术. 北京: 农业出版社, 1992: 111-112.
National Soil Census Office. China Soil Census Technology. Beijing: Agricultural Press, 1992: 111-112. (in Chinese)
[21] 孙波, 张桃林, 赵其国. 我国东南丘陵山区土壤肥力的综合评价. 土壤学报, 1995(4):362-369.
SUN B, ZHANG T L, ZHAO Q G. Comprehensive evaluation of soil fertility in the hilly and mountainous region of Southeastern China. Acta Pedologica Sinica, 1995(4):362-369. (in Chinese)
[22] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018,24(6):1416-1424.
WU H L, WANG S C, YAN Z H, HUAI S C, MA C B, XUE Y D, XU M G, LU C A. Evolution characteristics of fertility of typical paddy soil in China in recent 30 years. Journal of Plant Nutrition and Fertilizer, 2018,24(6):1416-1424. (in Chinese)
[23] 樊亚男, 姚利鹏, 瞿明凯, 胡文友, 黄标, 赵永存. 基于产量的稻田肥力质量评价及障碍因子区划——以进贤县为例. 土壤学报, 2017,54(5):1157-1169.
FAN Y N, YAO L P, QU M K, HU W Y, HUANG B, ZHAO Y C. Yield-based soil fertility quality assessment and constraint factor- based zoning of paddy soil—a case study of Jinxian County. Acta Pedologica Sinica, 2017,54(5):1157-1169. (in Chinese)
[24] 周海燕, 徐明岗, 蔡泽江, 文石林, 吴红慧. 湖南祁阳县土壤酸化主要驱动因素贡献解析. 中国农业科学, 2019,52(8):1400-1412.
doi: 10.3864/j.issn.0578-1752.2019.08.010
ZHOU H Y, XU M G, CAI Z J, WEN S L, WU H H. Quantitative analysis of driving-factors of soil acidification in Qiyang County. Hunan Province. Scientia Agricultura Sinica, 2019,52(8):1400-1412. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.08.010
[25] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese Croplands. Science, 2010,327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[26] 高利伟, 马林, 张卫峰, 王方浩, 马文奇, 张福锁. 中国作物秸秆养分资源数量估算及其利用状况. 农业工程学报, 2009,25(7):173-179.
GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(7):173-179. (in Chinese)
[27] BAI Z G, THOMAS C, GONZALEZ M R, BATJES N H, MÄDER P, BÜNEMANN E K, GOEDE R D, BRUSSAARD L, XU M G, FERREIRA C S S, REINTAM E, FAN H Z, MIHELIČ R, GLAVAN M, TÓTH Z. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture. Ecosystems & Environment, 2018,265:1-7.
[28] ZHANG Z Q, YU D S, SHI X Z, WARNER E, REN H R, SUN W X, TAN M Z, WANG H J. Application of categorical information in the spatial prediction of soil organic carbon in the red soil area of China. Soil Science & Plant Nutrition, 2010,56(2):307-318.
[29] 邓绍欢, 曾令涛, 关强, 李鹏, 刘满强, 李辉信, 焦加国. 基于最小数据集的南方地区冷浸田土壤质量评价. 土壤学报, 2016,53(5):1326-1333.
DENG S H, ZENG L T, GUAN Q, LI P, LIU M Q, LI H X, JIAO J G. Minimum dataset-based soil quality assessment of waterlogged paddy field in south China. Acta Pedologica Sinica, 2016,53(5):1326-1333. (in Chinese)
[30] 丁昌璞. 中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点. 土壤学报, 2008(1):66-75.
doi: 10.11766/trxb200609060109
DING C P. Oxidation-reduction regimes and characteristics of natural soil. upland soil and paddy soil in China. Acta Pedologica Sinica, 2008(1):66-75. (in Chinese)
doi: 10.11766/trxb200609060109
[31] 曹志洪, 周健民. 中国土壤质量. 北京: 科学出版社. 2008: 446-447, 417-418,455-456.
CAO Z H, ZHOU J M. Soil quality of China. Beijing: Science Press, 2008: 446-447, 417-418,455-456. (in Chinese)
[32] 李忠佩, 李德成, 张桃林, 陈碧云, 尹瑞玲, 施亚琴. 红壤水稻土肥力性状的演变特征. 土壤学报, 2003(6):870-878.
doi: 10.11766/trxb200212080611
LI Z P, LI D C, ZHANG T L, CHEN B Y, YIN R L, SHI Y Q. Dynamics of soil properties of paddy fields in red soil region. Acta Pedologica Sinica. 2003(6):870-878. (in Chinese)
doi: 10.11766/trxb200212080611
[33] WU C F, HUANG J Y, ZHU H, ZHANG L M, MINASNY B, MARCHANT B P, MCBRATNEY A B. Spatial changes in soil chemical properties in an agricultural zone in southeastern China due to land consolidation. Soil & Tillage Research, 2019(187):152-160.
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[4] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[5] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[6] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[7] ZHONG Liang,GUO Xi,GUO JiaXin,HAN Yi,ZHU Qing,XIONG Xing. Soil Texture Classification of Hyperspectral Based on Data Mining Technology [J]. Scientia Agricultura Sinica, 2020, 53(21): 4449-4459.
[8] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[9] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[10] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[11] ZHOU HaiYan,XU MingGang,CAI ZeJiang,WEN ShiLin,WU HongHui. Quantitative Analysis of Driving-Factors of Soil Acidification in Qiyang County, Hunan Province [J]. Scientia Agricultura Sinica, 2019, 52(8): 1400-1412.
[12] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[13] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[14] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[15] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
Full text



No Suggested Reading articles found!