Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (4): 739-753.doi: 10.3864/j.issn.0578-1752.2016.04.013

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Genome-Wide Association Study of 25 Hematological Parameters in Western DLY Pigs and Two Chinese Erhualian and Laiwu Populations

LIU Chen-long, YANG Hui, ZHANG Hui, ZHANG Zhi-yan, DUAN Yan-yu   

  1. National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang 330045
  • Received:2014-10-02 Online:2016-02-16 Published:2016-02-16

Abstract: 【Objective】 The genome-wide association of 25 hematological traits in Western DLY pigs and two Chinese Erhualian and Laiwu populations was analyzed in this study. The findings would benefit the final identification of causative genes, and provide insights into the potential molecular basis on hematological traits and provide clues for pig anti-disease breeding and production. 【Method】 A total of 610 DLY ternary hybrid pigs at (180±5) days, 336 Erhualian pigs and 333 Laiwu pigs at (300 ±5) days after birth were slaughtered at Guohong commercial abattoir. Blood samples at 2mL of each pig were immediately collected in anticoagulation tubes at slaughter. Twenty-five hematological traits were determined with commercial kits. Genomic DNA was extracted from ear tissues using a standard phenol/chloroform method, the concentration and quality were determined by NANODROP 1000 analyzer. All individuals were genotyped with Illumina porcineSNP60 Bead-Chip. After the genotype quality control by PLINK software, the GWAS were performed with the mixed linear model using GenABEL package in the R software.【Result】 After quality control of phenotype and genotype, there were 552 DLY, 325 Erhualian and 281 Laiwu left for the study, respectively; and there were 56 216 SNPs left for DLY pigs, 49 343 SNPs for Laiwu pigs, 35 974 SNPs for Erhualian pigs and 32 967 SNPs for Meta analysis. The GWAS identified 610 significant loci for 25 hematological traits, of which 135 SNPs were at the genome significant level and 475 SNPs were at the suggestive level, on all pig chromosomes in three populations. In DLY ternary hybrid pigs, 32 genome significant SNPs were identified in 8 traits (LYM,LYMR,BAS,BASR,MCV,RDW_CV,MCH and PDW) and other 85 suggestive level SNPs were also identified. In Erhualian pigs, 33 genome significant SNPs were identified in 9 traits (LYM, MCH, MCHC, MON, MONR, MPV, NEUR, P_LCC and PCT) and other 139 suggestive level SNPs were also identified. In Laiwu pigs, 54 genome significant SNPs were identified in 6 traits (BASR, HCT, MCH, MCHC, MCV and RBC) and other 169 suggestive level SNPs were also identified. In Meta results, 16 genome significant SNPs were identified in 6 traits (RBC, HCT, MCH, MCHC, MCV and MON) and other 82 suggestive level SNPs were also identified. Five promising candidate genes were found in the neighboring region of the lead SNPs at the genome-wide significant loci, such as F13A1 for BASR, SPTA1 for HCT, DBNL for LYM. SLC25A28 for MCHC and CTSC for NEUR. 【Conclusion】 A total of 610 loci surpassing the suggestive significant level were identified for 25 hematological traits on all pig chromosomes in Western DLY pigs and two Chinese Erhualian and Laiwu populations, revealing the complex genetic architecture of hematological traits. Neighboring the lead SNPs at the 54 genome-wide significant loci, five promising candidate genes were found, such as F13A1 for BASR, SPTA1 for HCT, DBNL for LYM, SLC25A28 for MCHC and CTSC for NEUR, and thus providing clues for analysis of the hematological traits and immune disease of commercial pigs and pure indigenous breeds.

Key words: pig, hematological traits, genome-wide association study, candidate gene

[1]    Ronald H, Edward J B, Sanford J S, Bruce F, Leslie E, Philip M. Hematology: Basic Principles and Practice. 5th ed Churchill, Livingstone, 2009.
[2]    Okada Y, Kamatani Y. Common genetic factors for hematological traits in humans. Journal of Human Genetics, 2012, 57(3): 161-169.
[3]    Evans D M, Frazer I H, Martin N G. Genetic and environmental causes of variation in basal levels of blood cells. Twin Research: the Official Journal of the International Society for Twin Studies, 1999, 2(4): 250-257.
[4]    Fisch I R, Freedman S H. Smoking, oral contraceptives, and obesity. Effects on white blood cell count. JAMA: The Journal of the American Medical Association, 1975, 234(5): 500-506.
[5]    Hall M A, Ahmadi K R, Norman P, Snieder H, Macgregor A J, Vaughan R W, Spector T D, Lanchbury J S. Genetic influence on peripheral blood T lymphocyte levels. Genes and Immunity, 2000, 1(7): 423-427.
[6]    Messinezy M, Pearson T C. Apparent polycythaemia: diagnosis, pathogenesis and management. European Journal of Haematology, 1993, 51(3): 125-131.
[7]    Whitfield J B, Martin N G. Genetic and environmental influences on the size and number of cells in the blood. Genetic Epidemiology, 1985, 2(2): 133-144.
[8]    Swindle M M, Makin A, Herron A J, Clubb F J, Jr., Frazier K S. Swine as models in biomedical research and toxicology testing. Veterinary Pathology, 2012, 49(2): 344-356.
[9]    Soranzo N, Spector T D, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight B F, Burns P, Laskowski R A, Xue Y, Menzel S, Altshuler D, Bradley J R, Bumpstead S, Burnett M S, Devaney J, Doring A, Elosua R, Epstein S E, Erber W, Falchi M, Garner S F, Ghori M J, Goodall A H, Gwilliam R, Hakonarson H H, Hall A S, Hammond N, Hengstenberg C, Illig T, Konig I R, Knouff C W, Mcpherson R, Melander O, Mooser V, Nauck M, Nieminen M S, O'donnell C J, Peltonen L, Potter S C, Prokisch H, Rader D J, Rice C M, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz S M, Serbanovic-Canic J, Sinisalo J, Siscovick D S, Stark K, Surakka I, Stephens J, Thompson J R, Volker U, Volzke H, Watkins N A, Wells G A, Wichmann H E, Van Heel D A, Tyler-Smith C, Thein S L, Kathiresan S, Perola M, Reilly M P, Stewart A F, Erdmann J, Samani N J, Meisinger C, Greinacher A, Deloukas P, Ouwehand W H, Gieger C. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41(11): 1182-1190.
[10]   Ganesh S K, Zakai N A, Van Rooij F J, Soranzo N, Smith A V, Nalls M A, Chen M H, Kottgen A, Glazer N L, Dehghan A, Kuhnel B, Aspelund T, Yang Q, Tanaka T, Jaffe A, Bis J C, Verwoert G C, Teumer A, Fox C S, Guralnik J M, Ehret G B, Rice K, Felix J F, Rendon A, Eiriksdottir G, Levy D, Patel K V, Boerwinkle E, Rotter J I, Hofman A, Sambrook J G, Hernandez D G, Zheng G, Bandinelli S, Singleton A B, Coresh J, Lumley T, Uitterlinden A G, Vangils J M, Launer L J, Cupples L A, Oostra B A, Zwaginga J J, Ouwehand W H, Thein S L, Meisinger C, Deloukas P, Nauck M, Spector T D, Gieger C, Gudnason V, Van Duijn C M, Psaty B M, Ferrucci L, Chakravarti A, Greinacher A, O'donnell C J, Witteman J C, Furth S, Cushman M, Harris T B, Lin J P. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genetics, 2009, 41(11): 1191-1198.
[11]   Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nature Genetics, 2010, 42(3): 210-215.
[12]   Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, Kubo M, Tsunoda T, Kamatani N, Kumada H, Puseenam A, Sura T, Daigo Y, Chayama K, Chantratita W, Nakamura Y, Matsuda K. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nature Genetics, 2009, 41(5): 591-595.
[13]   Meisinger C, Prokisch H, Gieger C, Soranzo N, Mehta D, Rosskopf D, Lichtner P, Klopp N, Stephens J, Watkins N A, Deloukas P, Greinacher A, Koenig W, Nauck M, Rimmbach C, Volzke H, Peters A, Illig T, Ouwehand W H, Meitinger T, Wichmann H E, Doring A. A genome-wide association study identifies three loci associated with mean platelet volume. American Journal of Human Genetics, 2009, 84(1): 66-71.
[14]   Nalls M A, Wilson J G, Patterson N J, Tandon A, Zmuda J M, Huntsman S, Garcia M, Hu D, Li R, Beamer B A, Patel K V, Akylbekova E L, Files J C, Hardy C L, Buxbaum S G, Taylor H A, Reich D, Harris T B, Ziv E. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. American Journal of Human Genetics, 2008, 82(1): 81-87.
[15]   Soranzo N, Rendon A, Gieger C, Jones C I, Watkins N A, Menzel S, Doring A, Stephens J, Prokisch H, Erber W, Potter S C, Bray S L, Burns P, Jolley J, Falchi M, Kuhnel B, Erdmann J, Schunkert H, Samani N J, Illig T, Garner S F, Rankin A, Meisinger C, Bradley J R, Thein S L, Goodall A H, Spector T D, Deloukas P, Ouwehand W H. A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood, 2009, 113(16): 3831-3837.
[16]   Uda M, Galanello R, Sanna S, Lettre G, Sankaran V G, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras M G, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina M D, Sollaino C, Moi P, Hirschhorn J N, Orkin S H, Abecasis G R, Schlessinger D, Cao A. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1620-1625.
[17]   Li J, Glessner J T, Zhang H, Hou C, Wei Z, Bradfield J P, Mentch F D, Guo Y, Kim C, Xia Q, Chiavacci R M, Thomas K A, Qiu H, Grant S F, Furth S L, Hakonarson H, Sleiman P M. GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Human Molecular Genetics, 2013, 22(7): 1457-1464.
[18]   Hu Z L, Fritz E R, Reecy J M. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Research, 2007, 35(Database issue): D604-609.
[19]   Yang S, Ren J, Yan X, Huang X, Zou Z, Zhang Z, Yang B, Huang L. Quantitative trait loci for porcine white blood cells and platelet-related traits in a White Duroc x Erhualian F resource population. Animal Genetics, 2009, 40(3): 273-278.
[20]   Zou Z, Ren J, Yan X, Huang X, Yang S, Zhang Z, Yang B, Li W, Huang L. Quantitative trait loci for porcine baseline erythroid traits at three growth ages in a White Duroc x Erhualian F(2) resource population. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 2008, 19(9): 640-646.
[21]   Zhang Z, Hong Y, Gao J, Xiao S, Ma J, Zhang W, Ren J, Huang L. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc x Erhualian F2 resource population. PLoS One, 2013, 8(5): e63665.
[22]   Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L. Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genetics, 2014, 15:41.
[23]   Luo W, Chen S, Cheng D, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L. Genome-wide association study of porcine hematological parameters in a Large White x Minzhu F2 resource population. International Journal of Biological Sciences, 2012, 8(6): 870-881.
[24]   Cho I C, Park H B, Yoo C K, Lee G J, Lim H T, Lee J B, Jung E J, Ko M S, Lee J H, Jeon J T. QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Animal Genetics, 2011, 42(6): 621-626.
[25]   Reiner G, Fischer R, Hepp S, Berge T, Kohler F, Willems H. Quantitative trait loci for red blood cell traits in swine. Animal Genetics, 2007, 38(5): 447-452.
[26]   Gong Y F, Lu X, Wang Z P, Hu F, Luo Y R, Cai S Q, Qi C M, Li S, Niu X Y, Qiu X T, Zeng J, Zhang Q. Detection of quantitative trait loci affecting haematological traits in swine via genome scanning. BMC Genetics, 2010, 11:56.
[27]   巩元芳, 卢昕, 王志鹏, 李珊, 邱小田, 张勤. 猪2、7和8号染色体上影响血常规指标的数量性状基因座(QTL)检测. 生物化学与生物物理进展, 2008, 35(11): 1291-1297.
Gong Y F, Lu X, Wang Z P, Li S, Qiu X T, Zhang Q. Detection of quantitative trait loci affecting haematological traits on swine chromosomes 2, 7 and 8. Progress in Biochemistry and Biophysics, 2008, 35(11): 1291-1297. (in Chinese)
[28]   Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559-575.
[29]   Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294-1296.
[30] Dupuis M C, Zhang Z, Druet T, Denoix J M, Charlier C, Lekeux P, Georges M. Results of a haplotype-based GWAS for recurrent laryngeal neuropathy in the horse. Mammalian Genome : Official Journal of the International Mammalian Genome Society, 2011, 22(9/10): 613-620.
[31]   Zeggini E, Scott L J, Saxena R, Voight B F, Marchini J L, Hu T, De Bakker P I, Abecasis G R, Almgren P, Andersen G, Ardlie K, Bostrom K B, Bergman R N, Bonnycastle L L, Borch-Johnsen K, Burtt N P, Chen H, Chines P S, Daly M J, Deodhar P, Ding C J, Doney A S, Duren W L, Elliott K S, Erdos M R, Frayling T M, Freathy R M, Gianniny L, Grallert H, Grarup N, Groves C J, Guiducci C, Hansen T, Herder C, Hitman G A, Hughes T E, Isomaa B, Jackson A U, Jorgensen T, Kong A, Kubalanza K, Kuruvilla F G, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren C M, Lyssenko V, Marvelle A F, Meisinger C, Midthjell K, Mohlke K L, Morken M A, Morris A D, Narisu N, Nilsson P, Owen K R, Palmer C N, Payne F, Perry J R, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner N W, Rees M, Roix J J, Sandbaek A, Shields B, Sjogren M, Steinthorsdottir V, Stringham H M, Swift A J, Thorleifsson G, Thorsteinsdottir U, Timpson N J, Tuomi T, Tuomilehto J, Walker M, Watanabe R M, Weedon M N, Willer C J, Wellcome Trust Case Control C, Illig T, Hveem K, Hu F B, Laakso M, Stefansson K, Pedersen O, Wareham N J, Barroso I, Hattersley A T, Collins F S, Groop L, Mccarthy M I, Boehnke M, Altshuler D. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 2008, 40(5): 638-645.
[32]   Wang J Y, Luo Y R, Fu W X, Lu X, Zhou J P, Ding X D, Liu J F, Zhang Q. Genome-wide association studies for hematological traits in swine. Animal Genetics, 2013, 44(1): 34-43.
[33]   De Jong S, Van Eijk K R, Zeegers D W, Strengman E, Janson E, Veldink J H, Van Den Berg L H, Cahn W, Kahn R S, Boks M P, Ophoff R A, Consortium P G C S. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. European Journal of Human Genetics, 2012, 20(9): 1004-1008.
[34]   Schizophrenia Psychiatric Genome-Wide Association Study C. Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 2011, 43(10): 969-976.
[35]   Barrett J C, Hansoul S, Nicolae D L, Cho J H, Duerr R H, Rioux J D, Brant S R, Silverberg M S, Taylor K D, Barmada M M, Bitton A, Dassopoulos T, Datta L W, Green T, Griffiths A M, Kistner E O, Murtha M T, Regueiro M D, Rotter J I, Schumm L P, Steinhart A H, Targan S R, Xavier R J, Consortium N I G, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot J P, De Vos M, Vermeire S, Louis E, Belgian-French I B D C, Wellcome Trust Case Control C, Cardon L R, Anderson C A, Drummond H, Nimmo E, Ahmad T, Prescott N J, Onnie C M, Fisher S A, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew C G, Parkes M, Georges M, Daly M J. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genetics, 2008, 40(8): 955-962.
[36]   Jang M A, Lee K O, Park Y S, Kim H J. Novel and         recurrent mutations in the F13A1 gene in unrelated Korean patients with congenital factor XIII deficiency//Blood Coagulation & Fibrinolysis: An International Journal in Haemostasis and Thrombosis, 2014,
[37]   Bogardus H, Schulz V P, Maksimova Y, Miller B A, Li P, Forget B G, Gallagher P G. Severe nondominant hereditary spherocytosis due to uniparental isodisomy at the SPTA1 locus. Haematologica, 2014, 99(9): e168-170.
[38]   Li Z, Park H R, Shi Z, Li Z, Pham C D, Du Y, Khuri F R, Zhang Y, Han Q, Fu H. Pro-oncogenic function of HIP-55/Drebrin-like (DBNL) through Ser269/Thr291-phospho-sensor motifs. Oncotarget, 2014, 5(10): 3197-3209.
[39]   Han J, Shui J W, Zhang X, Zheng B, Han S, Tan T H. HIP-55 is important for T-cell proliferation, cytokine production, and immune responses. Molecular and Cellular Biology, 2005, 25(16): 6869-6878.
[40]   Hung H I, Schwartz J M, Maldonado E N, Lemasters J J, Nieminen A L. Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy. The Journal of Biological Chemistry, 2013, 288(1): 677-686.
[41]   Paradkar P N, Zumbrennen K B, Paw B H, Ward D M, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Molecular and Cellular Biology, 2009, 29(4): 1007-1016.
[42]   Hart T C, Hart P S, Bowden D W, Michalec M D, Callison S A, Walker S J, Zhang Y, Firatli E. Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. Journal of Medical Genetics, 1999, 36(12): 881-887.
[43]   刘榜, 张庆德, 唐中林, 郭艳平, 马云鹤, 余梅, 樊斌, 朱猛进, 彭中镇, 李奎. 通城猪及其杂种猪若干免疫性状的研究. 华中农业大学学报, 2003, 22(5): 469-473.
Liu B, Zhang Q D, Tang Z L, Guo Y P, Ma Y H, Yu M, Fan B, Zhu M J, Peng Z Z, Li K. A Preliminary Study on Immune Traits of Tongcheng Pigs and Its Crossbreds. Journal of Huazhong Agricultural University, 2003, 22(5): 469-473. (in Chinese)
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[4] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[5] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[8] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[9] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[10] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[11] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[12] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[13] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[14] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[15] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!