Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (2): 348-360.doi: 10.3864/j.issn.0578-1752.2016.02.015

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Identification of Candidate Genes for Hematological Traits by Integrating Gene Expression Profiling and Genome-Wide Association Study in a Porcine Model

XU Pan, ZHANG Zhen, ZHANG Feng, YANG Bin, DUAN Yan-yu   

  1. State Key Laboratory for Pig Genetics Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045
  • Received:2015-02-09 Online:2016-01-16 Published:2016-01-16

Abstract: 【Objective】We herein integrated digital gene expression profiling and genome-wide association study in a White Duroc × Erhualian F2 resource population to identify candidate genes for hematological traits.【Method】The White Duroc × Erhualian F2 resource population were slaughtered at 240 ± 3 days. Blood was collected in anticoagulation tubes. A set of hematological parameters were measured using a whole blood analyzer. The 1 020 F2 pigs were genotyped using an Illumina porcine 60K SNP chip. Individuals with genotype-missing rates > 10% and Mendellian errors > 5% were removed. SNPs with a call rate < 95%, minor allele frequency < 5%, P value < 5 × 10-6 for Hardy Weinberg equilibrium (HWE), and the autosomal SNPs that were linked to sex chromosome were excluded. The liver samples of the 502 F2 pigs were then performed digital gene expression profiles sequencing on Illumina GA II. The raw tags were filtered to obtain clean tags. The clean tags were uniquely mapped to the reference gene sequences and were defined as unambiguous clean tags. The number of unambiguous clean tags was normalized to represent the expression level of each transcript. The expression level of each transcript was further transformed to lg2 value. The transcripts that expressed less than 20% of individuals were rejected. The traits of phenotype and gene expression were adjusted for sex, batch and kinship using polygentic function of GenABEL in R package. The correlations between gene expressions and phenotypic traits were evaluated using the residuals by Spearman’s correlation coefficient with a conservative threshold P < 0.0005. Positions of detected eQTL were plotted against the positions of the genes for which that eQTL were found. We also searched the eQTL within the 5.0 Mb region of the peak SNP of GWAS and performed an integrated analysis of eQTL and GWAS. Gene Ontology & KEGG pathway enrichment analysis was implemented by DAVID online tools and gene co-expression network was constructed by GeneMANIA online tools. 【Result】A total of 20 108 liver transcripts of 502 F2 pigs achieved the quality control requirements. We obtained 259 transcripts strongly associated with hemoglobin (HGB), red blood cell count (RBC), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and white blood cell count (WBC) respectively with a conservative threshold P < 0.0005. 34 liver transcripts were significantly associated with two or more phenotypic traits. Three hundred and four loci (eQTL) were identified to affect the transcription levels of these genes including 35 cis-eQTL and 120 trans-eQTL with P < 10-5. Each transcript was mapped to one to six eQTL. MCH and MCV shared the same cis-eQTL located on SSC8. The largest number of eQTL were located on SSC7 and most of them were trans-eQTL. KIT was identified as a candidate gene by eQTL analysis. Gene Ontology & KEGG pathway enrichment analysis allowed us to prioritize five candidate genes such as for KIT, PSEN2,and TFRC for RBC and THBS1, CYR61 for WBC. RPS10 was also identified as the candidate gene for WBC by the integration of eQTL, GWAS and gene co-expression network. 【Conclusion】In this study, we identified KIT, PSEN2,TFRC as the candidate genes for RBC, THBS1, CYR61, RPS10 as the candidate genes for WBC by integrating gene expression profiling and genome-wide association study in the White Duroc × Erhualian F2 resource population.

Key words: pig, hematological traits, gene expression profiling, expression quantitative trait loci, genome-wide association study, candidate gene

[1]    Nikinmaa M. Oxygen and carbon dioxide transport in vertebrate erythrocytes: an evolutionary change in the role of membrane transport. The Journal of Experimental Biology, 1997, 200(Pt 2): 369-380.
[2]    Beutler B. Innate immunity: an overview. Molecular Immunology, 2004, 40(12): 845-859.
[3]    Van De Vosse E, Van Dissel J T, Ottenhoff T H. Genetic deficiencies of innate immune signalling in human infectious disease. The Lancet Infectious Diseases, 2009, 9(11): 688-698.
[4]    Soranzo N, Spector T D, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight B F, Burns P, Laskowski R A, Xue Y, Menzel S, Altshuler D, Bradley J R, Bumpstead S, Burnett M S, Devaney J, Doring A, Elosua R, Epstein S E, Erber W, Falchi M, Garner S F, Ghori M J, Goodall A H, Gwilliam R, Hakonarson H H, Hall A S, Hammond N, Hengstenberg C, Illig T, Konig I R, Knouff C W, Mcpherson R, Melander O, Mooser V, Nauck M, Nieminen M S, O'donnell C J, Peltonen L, Potter S C, Prokisch H, Rader D J, Rice C M, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz S M, Serbanovic-Canic J, Sinisalo J, Siscovick D S, Stark K, Surakka I, Stephens J, Thompson J R, Volker U, Volzke H, Watkins N A, Wells G A, Wichmann H E, Van Heel D A, Tyler-Smith C, Thein S L, Kathiresan S, Perola M, Reilly M P, Stewart A F, Erdmann J, Samani N J, Meisinger C, Greinacher A, Deloukas P, Ouwehand W H, Gieger C. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41(11): 1182-1190.
[5]    Evans D M, Frazer I H, Martin N G. Genetic and environmental causes of variation in basal levels of blood cells. Twin Research : the Official Journal of the International Society for Twin Studies, 1999, 2(4): 250-257.
[6]    Garner C, Tatu T, Reittie J E, Littlewood T, Darley J, Cervino S, Farrall M, Kelly P, Spector T D, Thein S L. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood, 2000, 95(1): 342-346.
[7]    Edfors-Lilja I, Wattrang E, Magnusson U, Fossum C. Genetic variation in parameters reflecting immune competence of swine. Veterinary Immunology and Immunopathology, 1994, 40(1): 1-16.
[8]    Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L. Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genetics, 2014, 15:41.
[9]    Zhang Z, Hong Y, Gao J, Xiao S, Ma J, Zhang W, Ren J, Huang L. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population. PLoS One, 2013, 8(5): e63665.
[10]   Luo W, Chen S, Cheng D, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L. Genome-wide association study of porcine hematological parameters in a Large White × Minzhu F2 resource population. International Journal of Biological Sciences, 2012, 8(6): 870-881.
[11]   Wang J Y, Luo Y R, Fu W X, Lu X, Zhou J P, Ding X D, Liu J F, Zhang Q. Genome-wide association studies for hematological traits in swine. Animal Genetics, 2013, 44(1): 34-43.
[12]   Ponsuksili S, Murani E, Brand B, Schwerin M, Wimmers K. Integrating expression profiling and whole-genome association for dissection of fat traits in a porcine model. Journal of Lipid Research, 2011, 52(4): 668-678.
[13]   Wimmers K, Murani E, Ponsuksili S. Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Briefings in Functional Genomics, 2010, 9(3): 251-258.
[14]   Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X, Xing Y, Guo Y, Huang L. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics, 2014, 10(10): e1004710.
[15]   Schadt E E, Molony C, Chudin E, Hao K, Yang X, Lum P Y, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J D, Avila-Campillo I, Kruger M J, Johnson J M, Rohl C A, Van Nas A, Mehrabian M, Drake T A, Lusis A J, Smith R C, Guengerich F P, Strom S C, Schuetz E, Rushmore T H, Ulrich R. Mapping the genetic architecture of gene expression in human liver. PLoS Biology, 2008, 6(5): e107.
[16]   Cheung V G, Spielman R S, Ewens K G, Weber T M, Morley M, Burdick J T. Mapping determinants of human gene expression by regional and genome-wide association. Nature, 2005, 437(7063): 1365-9.
[17]   Zou Z, Ren J, Yan X, Huang X, Yang S, Zhang Z, Yang B, Li W, Huang L. Quantitative trait loci for porcine baseline erythroid traits at three growth ages in a White Duroc× Erhualian F2 resource population. Mammalian Genome, 2008, 19(9): 640-646.
[18]   Timens W, Kamps W A. Hemopoiesis in human fetal and embryonic liver. Microscopy Research and Technique, 1997, 39(5): 387-397.
[19]   Gupte P, Nagral A. Hematological problems and liver disease. Tropical gastroenterology : official Journal of the Digestive Diseases Foundation, 2009, 30(2): 65-70.
[20]   Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K. Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics, 2008, 9:367.
[21]   Rockman M V, Kruglyak L. Genetics of global gene expression. Nature Reviews Genetics, 2006, 7(11): 862-872.
[22]   Johansson A, Pielberg G, Andersson L, Edfors-Lilja I. Polymorphism at the porcine Dominant white/KIT locus influence coat colour and peripheral blood cell measures. Animal Genetics, 2005, 36(4): 288-296.
[23]   Francis R, Mcgrath G, Zhang J, Ruddy D A, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis M C, Parks A L, Xu W, Li J, Gurney M, Myers R L, Himes C S, Hiebsch R, Ruble C, Nye J S, Curtis D. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Developmental Cell, 2002, 3(1): 85-97.
[24]   Suzuki T, Chiba S. Notch signaling in hematopoietic stem cells. International Journal of Hematology, 2005, 82(4): 285-294.
[25]   Levy J E, Jin O, Fujiwara Y, Kuo F, Andrews N C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nature Genetics, 1999, 21(4): 396-399.
[26]   Ganesh S K, Zakai N A, Van Rooij F J, Soranzo N, Smith A V, Nalls M A, Chen M H, Kottgen A, Glazer N L, Dehghan A, Kuhnel B, Aspelund T, Yang Q, Tanaka T, Jaffe A, Bis J C, Verwoert G C, Teumer A, Fox C S, Guralnik J M, Ehret G B, Rice K, Felix J F, Rendon A, Eiriksdottir G, Levy D, Patel K V, Boerwinkle E, Rotter J I, Hofman A, Sambrook J G, Hernandez D G, Zheng G, Bandinelli S, Singleton A B, Coresh J, Lumley T, Uitterlinden A G, Vangils J M, Launer L J, Cupples L A, Oostra B A, Zwaginga J J, Ouwehand W H, Thein S L, Meisinger C, Deloukas P, Nauck M, Spector T D, Gieger C, Gudnason V, Van Duijn C M, Psaty B M, Ferrucci L, Chakravarti A, Greinacher A, O'donnell C J, Witteman J C, Furth S, Cushman M, Harris T B, Lin J P. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genetics, 2009, 41(11): 1191-1198.
[27]   Li S S, Ivanoff A, Bergstrom S E, Sandstrom A, Christensson B, Van Nerven J, Holgersson J, Hauzenberger D, Arencibia I, Sundqvist K G. T lymphocyte expression of thrombospondin-1 and adhesion to extracellular matrix components. European Journal of Immunology, 2002, 32(4): 1069-1079.
[28]   Emre Y, Imhof B A. Matricellular protein CCN1/CYR61: a new player in inflammation and leukocyte trafficking. Seminars in Immunopathology, 2014, 36(2): 253-259.
[29]   Doherty L, Sheen M R, Vlachos A, Choesmel V, O'donohue M F, Clinton C, Schneider H E, Sieff C A, Newburger P E, Ball S E, Niewiadomska E, Matysiak M, Glader B, Arceci R J, Farrar J E, Atsidaftos E, Lipton J M, Gleizes P E, Gazda H T. Ribosomal protein genes RPS10 and RPS26 are commonly mutated in Diamond- Blackfan anemia. American Journal of Human Genetics, 2010, 86(2): 222-228.
[30]   Janov A J, Leong T, Nathan D G, Guinan E C. Diamond-blackfan anemia natural history and sequelae of treatment. Medicine, 1996, 75(2): 77-87.
[31]   Wright G J, Puklavec M J, Willis A C, Hoek R M, Sedgwick J D, Brown M H, Barclay A N. Lymphoid/ neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity, 2000, 13(2): 233-242.
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[4] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[5] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[6] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[7] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[8] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[9] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[10] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[11] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[12] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[13] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[14] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[15] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!