Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4456-4465.doi: 10.3864/j.issn.0578-1752.2021.20.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs

ZHANG DanDan(),XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing()   

  1. Key Laboratory of Conservation and Biological Breeding of Local Livestock and Poultry Genetic Resources/College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036
  • Received:2020-09-09 Accepted:2021-07-08 Online:2021-10-16 Published:2021-10-25
  • Contact: ZuBing CAO E-mail:1730504758@qq.com;zubingcao@ahau.edu.cn

Abstract:

【Background】 TEA domain transcription factor 4 (TEAD4) is known to be a member of the TEAD family of transcription factors and plays a key role in determining the characteristics of the preimplantation embryo in rodents. In mouse embryos, it was found to be involved in regulating the genealogical differentiation of trophectoderm cells in preimplantation embryos by promoting Cdx2 expression. The absence of the TEAD4 gene in mouse embryos can lead to failure of mouse blastocyst formation. However, the role of TEAD4 in early porcine embryonic development is still unclear. 【Objective】This study aimed to preliminarily elucidate the effect of TEAD4 on early porcine embryonic development, in order to lay the theoretical foundation for further exploring the molecular mechanisms of transcription factors on early porcine embryonic development. 【Method】In this study, the bioinformatics analysis of the porcine TEAD4 gene was performed by using web-based tools, including analysis of the porcine TEAD4 gene sequence, comparison of homology between pigs, human and mice, and comparison of the evolutionary relationship of TEAD4 between different species. The role of TEAD4 in early embryonic development in pigs was then tested. The mRNA expression level of TEAD4 gene in porcine oocytes and the early embryos was firstly detected by fluorescence quantitative PCR. and then, siRNA targeting TEAD4 was designed and injected into mature oocytes by microinjection technique to reduce the level of endogenous TEAD4 gene in the oocyte cytoplasm, and to determine that TEAD4 siRNA acts only on TEAD4 gene, with a view to determining the role of TEAD4 gene in early porcine embryonic development. 【Result】Sequence analysis showed that the porcine TEAD4 gene contained 11 exons and localized on chromosome 5, with spanning 37.188 kb, 1 473 bp in full mRNA length, and 1305 bp in full coding region, which encoded 434 amino acids. Homology analysis with human and mouse revealed that TEAD4 was highly conserved in different species and had the closest affinity on pig and cow. The results of fluorescence quantitative PCR showed that TEAD4 mRNA was expressed in both porcine oocytes and early embryos; compared with GV-stage oocytes, the expression of TEAD4 mRNA was lowest in MII-stage oocytes and remained low until the 4-cell stage, but reached the highest expression in the 8-cell stage, and then gradually decreased in the morula and blastocyst stages. Microinjection of siRNA targeting TEAD4 revealed that TEAD4 siRNA only acted on the endogenous TEAD4 gene in oocytes, but not on TEAD1 and TEAD3, and compared with the control and negative control siRNA groups, the injection of TEAD4 siRNA significantly reduced TEAD4 mRNA expression at the 8-cell and morula embryo periods. When TEAD4 gene expression was knocked down, observation of the developmental efficiency of porcine orphan activation and in vitro fertilization embryos showed that the developmental efficiency of TEAD4 siRNA knockdown group from 8-cell to blastocyst stage was significantly reduced compared to the control and negative control siRNA groups. 【Conclusion】 The results of this study indicated that the TEAD4 gene was highly conserved across species, with the closest affinity on pigs and bovine, and that TEDA4 might be involved in regulating the development of early porcine embryos..

Key words: pig, early embryos, TEAD4, parthenogenetic activation, in vitro fertilization

Table 1

TEAD4 siRNA sequences"

干扰RNA名称 siRNA name 正向序列 Sense (5′-3′) 反向序列 Antisense (5′-3′)
siRNA-1 GGCUUUGGACAAGCCCAUUTT AAUGGGCUUGUCCAAAGCCTT
siRNA-2 GCCAGAUCUACGACAAGUUTT AACUUGUCGUAGAUCUGGCTT
siRNA-3 GCCAUUACUCCUACCGCAUTT AUGCGGUAGGAGUAAUGGCTT

Table 2

Primers used in the study"

基因名称
Gene name
序列 (5′-3′)
Sequence (5′-3′)
TEAD1 Forward Primer: CCGAAGTTTGCCTCGGACT
Reverse primer: ATTTTGGCGGCCGGATTTTC
TEAD3 Forward Primer: CGAGTACCAGGTTGGCATCA
Reverse primer: TTGTTCTGTAGGACGCTGGC
TEAD4 Forward Primer: CATTACTCCTACCGCATCC
Reverse primer: CCTGTGTGTCTCTGTTGG
EF1a1 Forward Primer: ATTGTTGCTGCTGGTGTTG
Reverse primer: TCATATCTCTTCTGGCTGTAGG

Fig. 1

Gene structure of pig TEAD4 The numbers 1-11 represent the exon position of inTEAD4"

Table 3

Homology comparison of pig, human and mice TEAD4 gene"

比较方式
Comparison method
TEAD4与人TEAD4比较
pTEAD4 vs hTEAD4
TEAD4与小鼠TEAD4比较
pTEAD4 vs mTEAD4
小鼠TEAD4与人TEAD4比较
hTEAD4 vs mTEAD4
CDS 90.96 % 77.93 % 78.54 %
AA 95.85 % 82.95 % 83.41 %

Fig. 2

The evolutionary relationship of TEAD4 among different species (AA) AA represents amino acid sequence"

Fig. 3

Expressions of TEAD4 mRNA in early porcine embryos a,b,c,d indicate significant differences, P<0.05"

Fig. 4

TEAD4 siRNA specifically targets the TEAD4 Figure Aand B: Effects of TEAD4 siRNA on TEAD4 mRNA expression in 8-cell and morula embryo. Figure Cand D: Effects of TEAD4 siRNA on mRNA expression of TEAD1 and TEAD3. a and b indicate significant differences (P<0.05). The same as below"

Fig. 5

Effect of TEAD4 knockdown on early development of porcine PA embryos (Bar = 50 μm)"

Fig. 6

Effect of TEAD4 knockdown on early development of porcine IVF embryos (Bar = 50 μm)"

[1] 颜泉梅, 赖良学. 基因修饰猪模型应用于人类健康的相关研究进展. 中国基础科学, 2015, 17(5):20-27. doi: 10.3969/j.issn.1009-2412.2015.05.004.
doi: 10.3969/j.issn.1009-2412.2015.05.004
YAN Q M, LAI L X. Progress of genetically-modified pigs in the human health related research. China Basic Science, 2015, 17(5):20-27. doi: 10.3969/j.issn.1009-2412.2015.05.004. (in Chinese)
doi: 10.3969/j.issn.1009-2412.2015.05.004
[2] 李文玲, 鲍磊, 肖磊. 基因修饰猪作为异种器官移植供体的研究进展. 中国细胞生物学学报, 2014, 36(9):1300-1305.
LI W L, BAO L, XIAO L. The progress of genetic-modified pigs as donors in xenotransplantation. Chinese Journal of Cell Biology, 2014, 36(9):1300-1305. (in Chinese)
[3] 黄耀强, 李国玲, 杨化强, 吴珍芳. 基因编辑猪在生物医学研究中的应用. 遗传, 2018, 40(8):632-646. doi: 10.16288/j.yczz.18-026.
doi: 10.16288/j.yczz.18-026
HUANG Y Q, LI G L, YANG H Q, WU Z F. Progress and application of genome-edited pigs in biomedical research. Hereditas, 2018, 40(8):632-646. doi: 10.16288/j.yczz.18-026. (in Chinese)
doi: 10.16288/j.yczz.18-026
[4] CHEN B Z, GU P, JIA J S, LIU W, LIU Y M, XU T, LIN X L, LIN T Y, LIU Y, CHEN H W, XU M C, YUAN J, ZHANG J N, ZHANG Y H, XIAO D, GU W W. Optimization strategy for generating gene-edited tibet minipigs by synchronized oestrus and cytoplasmic microinjection. International Journal of Biological Sciences, 2019, 15(12):2719-2732.
doi: 10.7150/ijbs.35930
[5] JUN S M, PARK M, LEE J Y, JUNG S, LEE J E, SHIM S H, SONG H, LEE D R. Single cell-derived clonally expanded mesenchymal progenitor cells from somatic cell nuclear transfer-derived pluripotent stem cells ameliorate the endometrial function in the uterus of a murine model with Asherman's syndrome. Cell Proliferation, 2019, 52(3):e12597. doi: 10.1111/cpr.12597.
doi: 10.1111/cpr.12597
[6] GRUPEN C G. The evolution of porcine embryo in vitro production. Theriogenology, 2014, 81(1):24-37. doi: 10.1016/j.theriogenology. 2013.09.022.
doi: 10.1016/j.theriogenology. 2013.09.022
[7] PFEFFER P L. Building principles for constructing a mammalian blastocyst embryo. Biology (Basel), 2018, 23; 7(3):41.
[8] OESTRUP O, HALL V, PETKOV S G, WOLF X A. HYLDIG S, HYTTEL P. From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reproduction in Domestic Animals, 2009, 44(Suppl 3):39-49.
doi: 10.1111/rda.2009.44.issue-s3
[9] SAIZ N, PLUSA B. Early cell fate decisions in the mouse embryo. Development (Cambridge, England), 2013, 145(3):R65-R80. doi: 10.1530/rep-12-0381.
doi: 10.1530/rep-12-0381
[10] YAMANAKA Y, RALSTON A, STEPHENSON R O, ROSSANT J. Cell and molecular regulation of the mouse blastocyst. Developmental Dynamics, 2006, 235(9):2301-2314. doi: 10.1002/dvdy.20844.
doi: 10.1002/dvdy.20844
[11] CHEN L, YABUUCHI A, EMINLI S, TAKEUCHI A, LU C W, HOCHEDLINGER K, DALEY G Q. Cross-regulation of the Nanog and Cdx2 promoters. Cell Research, 2009, 19(9):1052-1061. doi: 10.1038/cr.2009.79.
doi: 10.1038/cr.2009.79
[12] NISHIOKA N, INOUE K, ADACHI K, KIYONARI H, OTA M, RALSTON A, YABUTA N, HIRAHARA S, STEPHENSON R O, OGONUKI N, MAKITA R, KURIHARA H, MORIN-KENSICKI E M, NOJIMA H, ROSSANT J, NAKAO K, NIWA H. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell, 2009, 16(3):398-410. doi: 10.1016/j.devcel.2009.02.003.
doi: 10.1016/j.devcel.2009.02.003
[13] BOU G, LIU S, GUO J, ZHAO Y, SUN M, XUE B, WANG J, WEI Y, KONG Q, LIU Z. Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos. Developmental Biology, 2016, 410(1):36-44. doi: 10.1016/j.ydbio.2015.12.014.
doi: 10.1016/j.ydbio.2015.12.014
[14] CAO Z B, XU T T, TONG X, WANG Y Q, ZHANG D D, GAO D, ZHANG L, NING W, QI X, MA Y Y, YU T, KNOTT J G, ZHANG Y H. Maternal Yes-associated protein participates in porcine blastocyst development via modulation of trophectoderm epithelium barrier function. Cell, 2019, 8(12):1606.
[15] LIN K C, PARK H W, GUAN K L. Regulation of the hippo pathway transcription factor TEAD. Trends in Biochemical Sciences, 2017, 42(11):862-872. doi: 10.1016/j.tibs.2017.09.003.
doi: 10.1016/j.tibs.2017.09.003
[16] HOIDEN J K, CUNNINGHAM C N. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Cancers(Basel), 2018, 10(3):81.
[17] ZHAO B, YE X, YU J, LI L, LI W, LI S, YU J, LIN J D, WANG C Y, CHINNAIYAN A M, LAI Z C, GUAN K L. TEAD mediates YAP- dependent gene induction and growth control. Genes & Development, 2008, 22(14):1962-1971. doi: 10.1101/gad.1664408.
doi: 10.1101/gad.1664408
[18] TSIKA R W, MA L, KEHAT I, SCHRAMM C, SIMMER G, MORGAN B, FINE D M, HANFT L M, MCDONALD K S, MOLKENTIN J D, KRENZ M, YANG S, JI J. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. The Journal of Biological Chemistry, 2010, 285(18):13721-13735. doi: 10.1074/jbc.m109.063057.
doi: 10.1074/jbc.m109.063057
[19] HAN Z, YU Y, CAI B, XU Z, BAO Z, ZHANG Y, BAMBA D, MA W, GAO X, YUAN Y, ZHANG L, YU M, LIU S, YAN G, JIN M, HUANG Q, WANG X, HUA B, YANG F, PAN Z, LIANG H, LIU Y. YAP/TEAD3 signal mediates cardiac lineage commitment of human-induced pluripotent stem cells. Journal of Cellular Physiology, 2020, 235(3):2753-2760. doi: 10.1002/jcp.29179.
doi: 10.1002/jcp.29179
[20] GIBAULT F, STURBAUT M, BAILLY F, MELNYK P, COTELLE P. Targeting transcriptional enhanced associate domains (TEADs). Journal of Medicinal Chemistry, 2018, 61(12):5057-5072. doi: 10. 1021/acs.jmedchem.7b00879.
doi: 10. 1021/acs.jmedchem.7b00879
[21] SHI Z, HE F, CHEN M, HUA L, WANG W, JIAO S, ZHOU Z. DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Oncogene, 2017, 36(30):4362-4369. doi: 10.1038/onc.2017.24.
doi: 10.1038/onc.2017.24
[22] HOME P, SAHA B, RAY S, DUTTA D, GUNEWARDENA S, YOO B, PAL A, VIVIAN J L, LARSON M, PETROFF M, GALLAGHER P G, SCHULZ V P, WHITE K L, GOLOS T G, BEHR B, PAUL S. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(19):7362-7367. doi: 10.1073/pnas.1201595109.
doi: 10.1073/pnas.1201595109
[23] YAGI R, KOHN M J, KARAVANOVA I, KANEKO K J, VULLHORST D, DEPAMPHILIS M L, BUONANNO A. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development (Cambridge, England), 2007, 134(21):3827-3836. doi: 10.1242/dev.010223.
doi: 10.1242/dev.010223
[24] NISHIOKA N, YAMAMOTO S, KIYONARI H, SATO H, SAWADA A, OTA M, NAKAO K, SASAKI H. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mechanisms of Development, 2008, 125(3/4):270-283. doi: 10.1016/ j.mod.2007.11.002.
doi: 10.1016/ j.mod.2007.11.002
[25] KUMAR RAM P, SOMA R, PRATIK H, BISWARUP S, BHASWATI B, WILKINS HEATHER M, HEMANTKUMAR C, AVISHEK G, JESSICA M F, ARINDAM P, PARTHA K, SWERDLOW RUSSELL H, SOUMEN P. Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development, 2018, 145(19): dev162644. doi: 10.1242/dev.162644.
doi: 10.1242/dev.162644
[26] KANEKO K J, DEPAMPHILIS M L. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development (Cambridge, England), 2013, 140(17):3680-3690. doi: 10.1242/ dev.093799.
doi: 10.1242/ dev.093799
[27] AKIZAWA H, KOBAYASHI K, BAI H, TAKAHASHI M, KAGAWA S, NAGATOMO H, KAWAHARA M. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction (Cambridge, England), 2018, 155(6):563-571. doi: 10.1530/rep-18-0043.
doi: 10.1530/rep-18-0043
[28] SAKURAI N, TAKAHASHI K, EMURA N, HASHIZUME T, SAWAI K. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. The Journal of Reproduction and Development, 2017, 63(2):135-142.
doi: 10.1262/jrd.2016-130
[29] 贲文锐. Tead1-3在小鼠围着床期子宫中的表达研究[D]. 哈尔滨: 东北农业大学, 2014.
BEN W R. Expression of Tead1-3 in Mouse Uterus during peri-i mplantation period[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese)
[30] XIAO L, MA L, WANG Z, YU Y, LYE S J, SHAN Y, WEI Y. Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. Biochimica et Biophysica Acta Molecular Cell Research, 2020, 1867(9):118736. doi: 10.1016/j.bbamcr.2020.118736.
doi: 10.1016/j.bbamcr.2020.118736
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[4] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[5] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[6] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[7] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[8] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[9] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[10] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[11] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[12] QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676.
[13] YaoQun WU,ShaoKang CHEN,XiHui SHENG,XiaoLong QI,XiangGuo WANG,HeMin NI,Yong GUO,ChuDuan WANG,Kai XING. Differential Expression of mRNA and lncRNA in Longissimus Dorsi Muscle of Songliao Black Pig and Landrace Pig Based on High-Throughput Sequencing Technique [J]. Scientia Agricultura Sinica, 2020, 53(4): 836-847.
[14] ZHANG TieYing,ZHANG LiYang,LIU JunLi,LIAO ChaoYong,LÜ Lin,LIAO XiuDong,LUO XuGang. A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2020, 53(21): 4507-4515.
[15] XU Ying,YAN ChangYan,YANG WeiCong,ZHANG YunXiao,YU Yang,HUANG XianHui. Pharmacokinetics of Chlortetracycline Microspheres in Pigs [J]. Scientia Agricultura Sinica, 2020, 53(19): 4083-4091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!