Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2895-2905.doi: 10.3864/j.issn.0578-1752.2021.13.017
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
YU ZhengWang(),ZHOU ZhongXin(
)
[1] |
BRUSSOW H. Growth promotion and gut microbiota: insights from antibiotic use. Environmental Microbiology, 2015, 17(7):2216-2227. DOI: 10.1111/1462-2920.12786.
doi: 10.1111/1462-2920.12786 |
[2] |
SHILLING M, MATT L, RUBIN E, VISITACION M P, HALLER N A, GREY S F, WOOLVERTON C J. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on clostridium difficile. Journal of Medicinal Food, 2013, 16(12):1079-1085. DOI: 10.1089/jmf.2012.0303.
doi: 10.1089/jmf.2012.0303 |
[3] |
ZENTEK J, BUCHHEIT-RENKO S, FERRARA F, VAHJEN W, VAN KESSEL A G, PIEPER R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Animal Health Research Reviews, 2011, 12(1):83-93. DOI: 10.1017/s1466252311000089.
doi: 10.1017/S1466252311000089 |
[4] |
WOOLFORD M K. Microbiological screening of straight chain fatty-acids (c1-c12)as potential silage additives. Journal of the Science of Food and Agriculture, 1975, 26(2):219-228. DOI: 10.1002/jsfa.2740260213.
doi: 10.1002/(ISSN)1097-0010 |
[5] | LIU Y L. Fatty acids, inflammation and intestinal health in pigs. Journal of Animal Science and Biotechnology, 2016, 7(3):321-329. |
[6] | 刘聪聪, 王树辉, 涂治骁, 陈少魁, 汪龙梅, 秦琴, 张琳, 王秀英, 刘玉兰, 朱惠玲. 中链脂肪酸对脂多糖诱导的断奶仔猪肠黏膜免疫屏障损伤的保护作用. 中国畜牧杂志, 2018, 54(10):70-74. |
LIU C C, WANG S H, TU Z X, CHEN S K, WANG L M, QING Q, ZHANG L, WANG X Y, LIU Y L, ZHU H L. Protective effect of medium-chain fatty acids on injury of intestinal mucosal immune barrier induced by Lipopolysaccharide in weaned piglets. China Animal Husbandry & Veterinary Medicine, 2018, 54(10):70-74. (in Chinese) | |
[7] | 赵晓, 张永, 张新胜, 徐庆, 于晓明, 李惠子, 杨雪艳, 刘英华, 薛长勇. 不同脂肪酸组成的油脂对LPS诱导的小鼠肠道炎症的影响. 中国食物与营养, 2017, 23(1):60-63. |
ZHAO X, ZHANG Y, ZHANG X S, XV Q, YU X M, LI H Z, YANG X Y, LIU Y H, XUE C Y. Effects of oil composed of different fatty acids on intestinal inflammation induced by LPS in C57BL/6J mice. Food and Nutrition in China, 2017, 23(1):60-63. (in Chinese) | |
[8] |
HANCZAKOWSKA E. The use of medium-chain fatty acids in piglet feeding - a review. Annals of Animal Science, 2017, 17(4):967-977. DOI: 10.1515/aoas-2016-0099.
doi: 10.1515/aoas-2016-0099 |
[9] |
ZHANG J Y, BAEK D H, KIM I H. Effect of dietary supplemental medium chain fatty acids instead of antibiotics on the growth performance, digestibility and blood profiles in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2019, 103(6):1946-1951. DOI: 10.1111/jpn.13175.
doi: 10.1111/jpn.v103.6 |
[10] | SUNKARA L T, JIANG W, ZHANG G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 2012, 7(11). DOI: 10.1371/journal.pone.0049558. |
[11] | WU J, MA N, JOHNSTON L J, MA X. Dietary nutrients mediate intestinal host defense peptide expression. Advances in Nutrition, 2020, 11(1):92-102. DOI: 10.1093/advances/nmz057. |
[12] |
WANG J, LU J, XIE X, XIONG J, HUANG N, WEI H, JIANG S, PENG J. Blend of organic acids and medium chain fatty acids prevents the inflammatory response and intestinal barrier dysfunction in mice challenged with enterohemorrhagic Escherichia coli O157:H7. International Immunopharmacology, 2018, 58:64-71. DOI: 10.1016/j.intimp.2018.03.014.
doi: 10.1016/j.intimp.2018.03.014 |
[13] | BALTIC B, STARCEVIC M, DORDEVIC J, MRDOVIC B, MARKOVIC R. Importance of medium chain fatty acids in animal nutrition. 59th International Meat Industry Conference Meatcon 2017. 2017. |
[14] | 庞培, 田雯, 刘志强, 范觉鑫, 龚金秋, 肖淑华. 中链脂肪酸的抑菌作用及在断奶仔猪料中应用. 广东畜牧兽医科技, 2019, 44(1):21-23. |
PANG P, TIAN W, LIU Z Q, FAN J X, GONG J Q, XIAO S H. Bacteriostatic action of medium chain fatty acids and its application in weaned piglets. Guangdong Journal of Animal and Veterinary Science, 2019, 44(1):21-23. (in Chinese) | |
[15] | JACKMAN J A, BOYD R D, ELROD C C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: towards gut health improvement and feed pathogen mitigation. Journal of Animal Science and Biotechnology, 2020, 11. DOI: 10.1186/s40104-020-00446-1. |
[16] | 薛永强, 黄志威, 雷志伟, 王新毅. 中短链脂肪酸在无抗饲料中的应用. 饲料研究, 2020, 43(3):133-136. |
XUE Y Q, HUANG Z W, LEI Z W, WANG X Y. Application of short -medium chain fatty acids in non-resistant feed. Feed Research, 2020, 43(3):133-136. (in Chinese) | |
[17] |
ROSSI R, PASTORELLI G, CANNATA S, CORINO C. Recent advances in the use of fatty acids as supplements in pig diets: A review. Animal Feed Science and Technology, 2010, 162(1-2):1-11. DOI; 10.1016/j.anifeedsci.2010.08.013.
doi: 10.1016/j.anifeedsci.2010.08.013 |
[18] |
DIERICK N A, DECUYPERE J A, DEGEYTER I. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition. Archives of Animal Nutrition, 2003, 57(1):49-63. DOI: 10.1080/0003942031000086626.
doi: 10.1080/0003942031000086626 |
[19] | 汪加明, 周庆华, 王宏玲, 李飞务. 饲料中添加中链脂肪酸对断奶仔猪生长性能的影响. 猪业科学, 2017, 34(9):90-91. |
WANG J M, ZHOU Q H, WANG H L, LI F W. Effect of adding medium chain fatty acid in feed on growth performance of weaned piglets. Swine Industry Science, 2017, 34(9):90-91.(in Chinese) | |
[20] | 陆蠡珠. 我国脂肪酸的生产和应用. 精细与专用化学品, 2007, 15(1):24-28. |
LU L Z. Production and application of fatty acids in China. Fine and Specialty Chemicals, 2017, 15(1):24-28.(in Chinese) | |
[21] |
BHATNAGAR A S, KUMAR P K P, HEMAVATHY J, KRISHNA A G G, Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. Journal of the American Oil Chemists Society, 2009, 86(10):991-999. DOI: 10.1007/s11746-009-1435-y.
doi: 10.1007/s11746-009-1435-y |
[22] |
DAYRIT F M. The properties of lauric acid and their significance in coconut oil. Journal of the American Oil Chemists Society, 2015, 92(1):1-15. DOI: 10.1007/s11746-014-2562-7.
doi: 10.1007/s11746-014-2562-7 |
[23] | WANG J H, WANG X X, LI J T, CHEN Y Q, YANG W J, ZHANG L Y. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broilers. Asian-Australasian Journal of Animal Sciences, 2015, 28(2):223-230. |
[24] |
DECUYPERE J A, DIERICK N A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutrition Research Reviews, 2003, 16(2):193-209. DOI: 10.1079/nrr200369.
doi: 10.1079/NRR200369 |
[25] | CRUZ-ESTRADA A, RUIZ-SANCHEZ E, CRISTOBAL-ALEJO J, GONZALEZ-COLOMA A, FEANDRES M, GAMBOA-ANGULO M. Medium-chain fatty acids from eugenia winzerlingii leaves causing insect settling deterrent, nematicidal, and phytotoxic effects. Molecules, 2019, 24(9). DOI: 10.3390/molecules24091724. |
[26] |
FISCHER C L, DRAKE D R, DAWSON D V, BLANCHETTE D R, BROGDEN K A, WERTZ P W. Antibacterial activity of sphingoid bases and fatty acids against Gram-Positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 2012, 56(3):1157-1161. DOI: 10.1128/aac.05151-11.
doi: 10.1128/AAC.05151-11 |
[27] | 张希, 杨明, 宋飞, 张辉, 冯凤琴. 脂肪酸及其衍生物的抑菌活性. 浙江大学学报(农业与生命科学版), 2013, 39(02):155-160. |
ZHANG X, YANG M, SONG F, ZHANG H, FENG F Q. Bacteriostatic activities of fatty acids and their derivatives. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2):155-160.(in Chinese) | |
[28] |
DESBOIS A P, SMITH V J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 2010, 85(6):1629-1642. DOI: 10.1007/s00253-009-2355-3.
doi: 10.1007/s00253-009-2355-3 |
[29] | YOON B K, JACKMAN J A, VALLE-GONZALEZ E R, CHO N J. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 2018, 19(4). DOI: 10.3390/ijms19041114. |
[30] | 蒋增良, 张辉, 杜鹃, 冯凤琴. 月桂酸单甘油酯抑菌机理、影响因素及其复配体系的抑菌特性. 中国食品学报, 2016, 16(3):146-151. |
JANG Z L, ZHANG H, DU J, FENG F Q. Antibacterial mechanism and influence factors of glycerol monolaurate and antibacterial properties of its combinations. Journal of Chinese Institute of Food Science and Technology, 2016, 16(3):146-151. (in Chinese) | |
[31] | SCHLIEVERT P M, PETERSON M L. Glycerol monolaurate antibacterial activity in broth and biofilm cultures. PLoS ONE, 2012, 7(7). DOI: 10.1371/journal.pone.0040350. |
[32] | KUMAR P, LEE J-H, BEYENAL H, LEE J. Fatty acids as antibiofilm and antivirulence agents. Trends in Microbiology, 2020. DOI: 10.1016/j.tim.2020.03.014. |
[33] |
MESSENS W, GORIS J, DIERICK N, HERMAN L, HEYNDRICKX M. Inhibition of Salmonella typhimuriumby medium-chain fatty acids in anin vitro simulation of the porcine cecum. Veterinary Microbiology, 2010, 141(1-2):73-80.DOI: 10.1016/j.vetmic.2009.08.002.
doi: 10.1016/j.vetmic.2009.08.002 |
[34] | LOPEZ-COLOM P, CASTILLEJOS L, RODRIGUEZ-SORRENTO A, PUYALTO M, JOSE MALLO J, MARIA MARTIN-ORUE S. Efficacy of medium-chain fatty acid salts distilled from coconut oil against two enteric pathogen challenges in weanling piglets. Journal of Animal Science and Biotechnology, 2019, 10(1). DOI: 10.1186/s40104-019-0393-y. |
[35] |
HULANKOVA R, BORILOVA G. In vitro combined effect of oregano essential oil and caprylic acid against Salmonella serovars, Escherichia coli O157:H7, Staphylococcus aureusand Listeria monocytogenes. Acta Veterinaria Brno, 2011, 80(4):343-348. DOI: 10.2754/avb201180040343.
doi: 10.2754/avb201180040343 |
[36] | 祁姣姣, 朱剑锋, 周海泳, 胡学生, 王创, 刘紫芊, 胡文锋. 由中链脂肪酸与植物精油为主要成分组成的复合型酸化剂抑菌性能的研究. 猪业科学, 2018, 35(01):109-113. |
QI J J, ZHU J F, ZHOU H Y, HU X S, WANG C, LIU Z X, HU W F. Study on the antibacterial properties of compound acidizing agents composed of medium chain fatty acids and plant essential oils. Swine Industry Science, 2018, 35(01):109-113. (in Chinese) | |
[37] |
KIM S A, RHEE M S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Applied and Environmental Microbiology, 2013, 79(21):6552-6560. DOI: 10.1128/aem.02164-13.
doi: 10.1128/AEM.02164-13 |
[38] | 王蕊香, 那木吉拉 银花. 断奶仔猪发生应激原因与防控措施. 畜牧兽医科学(电子版), 2020, (4):47-48. |
WANG R X, NAMUJILA YING H. Causes and prevention measures of stress in weaned piglets. Graziery Veterinary Sciences (Electronic Version), 2020, (4):47-48. (in Chinese) | |
[39] |
KIM S A, RHEE M S. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, beta-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control, 2016, 60:447-454. DOI: 10.1016/j.foodcont.2015.08.022.
doi: 10.1016/j.foodcont.2015.08.022 |
[40] | LILLEHOJ H, LIU Y, CALSAMIGLIA S, FERNANDEZ-MIYAKAWA M E, CHI F, CRAVENS R L, OH S, GAY C G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 2018, 49. DOI: 10.1186/s13567-018-0562-6. |
[41] | SUIRYANRAYNA M V A N, RAMANA J V. A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 2015, 6. DOI: 10.1186/s40104-015-0042-z. |
[42] |
THORMAR H, HILMARSSON H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chemistry and Physics of Lipids, 2007, 150(1):1-11.DOI: 10.1016/j.chemphyslip.2007.06.220.
doi: 10.1016/j.chemphyslip.2007.06.220 |
[43] |
DESBOIS A P, MEARNS-SPRAGG A, SMITH V J. A fatty acid from the diatom phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 2009, 11(1):45-52. DOI: 10.1007/s10126-008-9118-5.
doi: 10.1007/s10126-008-9118-5 |
[44] | FISCHER C L, BLANCHETTE D R, BROGDEN K A, DAWSON D V, DRAKE D R, HILL J R, WERTZ P W. The roles of cutaneous lipids in host defense. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2014, 1841(3):319-322. DOI: 10.1016/j.bbalip.2013.08.012. |
[45] |
DRAKE D R, BROGDEN K A, DAWSON D V, WERTZ P W. Thematic review series: Skin lipids - Antimicrobial lipids at the skin surface. Journal of Lipid Research, 2008, 49(1):4-11. DOI: 10.1194/jlr.R700016-JLR200.
doi: 10.1194/jlr.R700016-JLR200 |
[46] |
KENDALL A C, NICOLAOU A. Bioactive lipid mediators in skin inflammation and immunity. Progress in Lipid Research, 2013, 52(1):141-164. DOI: 10.1016/j.plipres.2012.10.003.
doi: 10.1016/j.plipres.2012.10.003 |
[47] | FISCHER C L. Antimicrobial activity of host-derived lipids. Antibiotics-Basel, 2020, 9(2). DOI: 10.3390/antibiotics9020075. |
[48] | RICKETTS C R, SQUIRE J R, TOPLEY E, LILLY H A. Human skin lipids with particular reference to the self-sterilising power of the skin. Clinical Science, 1951, 10(1):89-111. |
[49] |
ZHOU Z, HUANG J, HAO H, WEI H, ZHOU Y, PENG J. Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. Journal of Functional Foods, 2019, 52:348-359. DOI: 10.1016/j.jff.2018.11.028.
doi: 10.1016/j.jff.2018.11.028 |
[50] |
KOOPMAN J S. Milk-fat and gastrointestinal illness. American Journal of Public Health, 1984, 74(12):1371-1373. DOI: 10.2105/ajph.74.12.1371.
doi: 10.2105/AJPH.74.12.1371 |
[51] |
SPRONG R C, HULSTEIN M F, VAN DER MEER R. High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. Journal of Nutrition, 1999, 129(7):1382-1389.
doi: 10.1093/jn/129.7.1382 |
[52] | MISHRA B, WANG G. The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Frontiers in Immunology, 2012, 3.DOI: 10.3389/fimmu.2012.00221. |
[53] | VAN DIJK A, HEDEGAARD C J, HAAGSMAN H P, HEEGAARD P M H. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Veterinary Research, 2018, 49. DOI: 10.1186/s13567-018-0558-2. |
[54] |
HANCOCK R E W, HANEY E F, GILL E E. The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology, 2016, 16(5):321-334.DOI: 10.1038/nri.2016.29.
doi: 10.1038/nri.2016.29 |
[55] | LIM C H, PUTHIA M, BUTRYM M, TAY H M, LEE M Z Y, HOU H W, SCHMIDTCHEN A. Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Scientific Reports, 2017, 7. DOI: 10.1038/s41598-017-11464-x. |
[56] |
HILCHIE A L, WUERTH K, HANCOCK R E W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology, 2013, 9(12):761-768. DOI: 10.1038/nchembio.1393.
doi: 10.1038/nchembio.1393 |
[57] |
MANSOUR S C, PENA O M, HANCOCK R E W. Host defense peptides: front-line immunomodulators. Trends in Immunology, 2014, 35(9):443-450. DOI: 10.1016/j.it.2014.07.004.
doi: 10.1016/j.it.2014.07.004 |
[58] |
YEUNG A T Y, GELLATLY S L, HANCOCK R E W. Multifunctional cationic host defence peptides and their clinical applications. Cellular and Molecular Life Sciences, 2011, 68(13):2161-2176. DOI: 10.1007/s00018-011-0710-x.
doi: 10.1007/s00018-011-0710-x |
[59] |
ZHANG S, CAI H, CAO D, DENG J, JIA J, LI J, MING F, ZHAO P, MA M, LIANG Q, ZENG M, ZHANg L. Recombinant plasmids containing CpG with porcine host defense peptides (PR- 39/pBD-1) modulates the innate and adaptive intestinal immune responses (including maternal-derived) in piglets. International Immunopharmacology, 2019, 70:467-476.DOI: 10.1016/j.intimp.2019.03.007.
doi: 10.1016/j.intimp.2019.03.007 |
[60] | 张萌萌, 姜宁, 张爱忠, 张晨雪. 饲料添加剂影响内源性抗菌肽表达和免疫调节机制. 动物营养学报, 2019, 31(1):90-96. |
ZHANG M M, JIANG N, ZHANG A Z, ZHANG C X. Feed additives affect endogenous antimicrobial peptide expression and immune regulation mechanism. Chinese Journal of Animal Nutrition, 2019, 31(1):90-96. (in Chinese) | |
[61] | ZENG X, SUNKARA L T, JIANG W, BIBLE M, CARTER S, MA X, QIAO S, ZHANG G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 2013, 8(8). DOI: 10.1371/journal.pone.0072922. |
[62] |
JIANG W, SUNKARA L T, ZENG X, DENG Z, MYERS S M, ZHANG G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides, 2013, 50:129-138. DOI: 10.1016/j.peptides.2013.10.008.
doi: 10.1016/j.peptides.2013.10.008 |
[63] |
BECHINGER B, GORR S U. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research, 2017, 96(3):254-260. DOI: 10.1177/0022034516679973.
doi: 10.1177/0022034516679973 |
[64] | 陈永宏, 罗芳, 陶金忠, 王晶. 营养物质对动物内源性宿主防御肽表达的调节作用. 畜牧兽医学报, 2020, 51(8):1775-1783. |
CHEN Y H, LUO F, TAO J Z, WANG J. Regulation of nutrients on the expression of endogenous host defense peptide in animals. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8):1775-1783. (in Chinese) | |
[65] |
CHEUNG G Y C, FISHER E L, MCCAUSLAND J W, CHOI J, COLLINS J W M, DICKEY S W, OTTO M. Antimicrobial peptide resistance mechanism contributes to staphylococcus aureus infection. Journal of Infectious Diseases, 2018, 217(7):1153-1159. DOI: 10.1093/infdis/jiy024.
doi: 10.1093/infdis/jiy024 |
[66] | DENG Z, WANG J, LYU W, WIENEKE X, MATTS R, MA X, ZHANG G. Development of a cell-based high-throughput screening assay to identify porcine host defense peptide-inducing compounds. Journal of Immunology Research, 2018. DOI: 10.1155/2018/5492941. |
[67] |
PAPAMANDJARIS A A, MACDOUGALL D E, JONES P J H. Medium chain fatty acid metabolism and energy expenditure: Obesity treatment implications. Life Sciences, 1998, 62(14):1203-1215. DOI: 10.1016/s0024-3205(97)01143-0.
doi: 10.1016/S0024-3205(97)01143-0 |
[68] |
CHIANG S H, PETTIGREW J E, CLARKE S D, CORNELIUS S G. Limits of medium-chain and long-chain triacylglycerol utilization by neonatal piglets. Journal of Animal Science, 1990, 68(6):1632-1638.
doi: 10.2527/1990.6861632x |
[69] |
SCHOENFELD P, WOJTCZAK L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective, Journal of Lipid Research, 2016, 57(6): 943-954. 10.1194/jlr.R067629.
doi: 10.1194/jlr.R067629 |
[70] | SCHONFELD P, WOJTCZAK A B, GEELEN M J H, KUNZ W, WOJTCZAK L. On the mechanism of the so-called uncoupling effect of medium-chain and short-chain fatty-acids. Biochimica Et Biophysica Acta, 1988, 936(3):280-288. DOI: 10.1016/0005-2728(88)90003-5. |
[71] | GEBHARDT J T, THOMSON K A, WOODWORTH J C, DRITZ S S, TOKACH M D, DEROUCHEY J M, GOODBAND R D, JONES C K, COCHRANE R A, NIEDERWERDER M C, FERNANDO S, ABBAS W, BURKEY T E. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. Journal of Animal Science, 2020, 98(1). DOI: 10.1093/jas/skz358. |
[72] |
MONTGOMERY M K, OSBORNE B, BROWN S H J, SMALL L, MITCHELL T W, COONEY G J, TURNER N. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research, 2013, 54(12):3322-3333. DOI: 10.1194/jlr.M040451.
doi: 10.1194/jlr.M040451 |
[73] |
ISHIZAWA R, MASUDA K, SAKATA S, NAKATANI A. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles. Journal of Oleo Science, 2015, 64(4):415-421. DOI: 10.5650/jos.ess14199.
doi: 10.5650/jos.ess14199 |
[74] |
DING J, LOIZIDES-MANGOLD U, RANDO G, ZOETE V, MICHIELIN O, REDDY J K, WAHLI W, RIEZMAN H, THORENS B. The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Reports, 2013, 5(1):248-258. DOI: 10.1016/j.celrep.2013.08.032.
doi: 10.1016/j.celrep.2013.08.032 |
[75] | 王钰飞, 齐岩, 铃田靖幸, 陈燕军, 优克刚, 安福生, 薛廷伍. 中链脂肪酸在新生仔猪上的研究与应用. 动物营养学报, 2015, 27(7):1997-2004. |
WANG Y F, QI Y, YASUYUKI S, CHEN Y J, KATSUGO Y, AN F S, XUE T W. Research and application of medium-chain fatty acids in neonatal piglets. Chinese Journal of Animal Nutrition, 2015, 27(7):1997-2004. (in Chinese) | |
[76] |
PANYAKAEW P, BOON N, GOEL G, YUANGKLANG C, SCHONEWILLE J T, HENDRIKS W H, FIEVEZ V. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls. Animal, 2013, 7(12):1950-1958.DOI: 10.1017/s1751731113001766.
doi: 10.1017/S1751731113001766 |
[77] |
KHOSRAVINIA H. Effect of dietary supplementation of medium- chain fatty acids on growth performance and prevalence of carcass defects in broiler chickens raised in different stocking densities. Journal of Applied Poultry Research, 2015, 24(1):1-9. DOI: 10.3382/japr/pfu001.
doi: 10.3382/japr/pfu001 |
[78] | 王建军, 王恬. 中链脂肪酸的生物学特性及其在动物生产中的应用. 动物营养学报, 2011, 23(7):1073-1078. |
WANG J J, WANG T. Medium-chain fatty acids and their application in animal production. Chinese Journal of Animal Nutrition, 2011, 23(27):1073-1078. (in Chinese) | |
[79] |
HANCZAKOWSKA E, SWIATKIEWICZ M, NATONEK- WISNIEWSKA M, OKON K. Medium chain fatty acids (MCFA) and/or probiotic Enterococcus faecium as a feed supplement for piglets. Livestock Science, 2016, 192:1-7. doi: 10.1016/j.livsci.2016.08.002.
doi: 10.1016/j.livsci.2016.08.002 |
[80] |
HANCZAKOWSKA E, SZEWCZYK A, OKON K. Effects of dietary caprylic and capric acids on piglet performance and mucosal epithelium structure of the ileum. Journal of Animal and Feed Sciences, 2011, 20(4):556-565. DOI: 10.22358/jafs/66213/2011.
doi: 10.22358/jafs/66213/2011 |
[81] | HAN Y K, HWANG I L H, THACKER P A. Use of a micro- encapsulated eucalyptus-medium chain fatty acid product as an alternative to zinc oxide and antibiotics for weaned pigs. Journal of Swine Health and Production, 2011, 19(1):34-43. |
[82] |
HANCZAKOWSKA E, SZEWCZYK A, SWIATKIEWICZ M, OKON K. Short- and medium-chain fatty acids as a feed supplement for weaning and nursery pigs. Polish Journal of Veterinary Sciences, 2013, 16(4):647-654. DOI: 10.2478/pjvs-2013-0092.
doi: 10.2478/pjvs-2013-0092 |
[83] |
KUANG Y, WANG Y, ZHANG Y, SONG Y, ZHANG X, LIN Y, CHE L, XU S, WU D, XUE B, FANG Z. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Animal Feed Science and Technology, 2015, 208:145-157. DOI: 10.1016/j.anifeedsci.2015.07.010.
doi: 10.1016/j.anifeedsci.2015.07.010 |
[84] |
CERA K R, MAHAN D C, REINHART G A. Postweaning swine performance and serum profile responses to supplemental medium- chain free fatty-acids and tallow. Journal of Animal Science, 1989, 67(8):2048-2055.
doi: 10.2527/jas1989.6782048x |
[85] |
DEVI S M, KIM I H. Effect of medium chain fatty acids (MCFA) and probiotic (Enterococcus faecium) supplementation on the growth performance, digestibility and blood profiles in weanling pigs. Veterinarni Medicina, 2014, 59(11):527-535. DOI: 10.17221/7817-vetmed.
doi: 10.17221/VETMED |
[86] | GEBHARDT J T, THOMSON K A, WOODWORTH J C, DRITZ S S, TOKACH M D, DEROUCHEY J M, GOODBAND R D, JONES C K, COCHRANE R A, NIEDERWERDER M C, FERNANDO S, ABBAS W, BURKEY T E. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. Journal of Animal Science, 2020, 98(1). DOI: 10.1093/jas/skz358. |
[87] | PAULO F, SANTOS L. Design of experiments for microencapsulation applications: A review. Materials Science & Engineering C-Materials for Biological Applications, 2017, 77:1327-1340. DOI: 10.1016/j.msec.2017.03.219. |
[88] |
ZENTEK J, BUCHHEIT-RENKO S, MANNER K, PIEPER R, VAHJEN W. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Archives of Animal Nutrition, 2012, 66(1):14-26. DOI: 10.1080/1745039x.2011.644916.
doi: 10.1080/1745039X.2011.644916 |
[89] |
OMONIJO F A, KIM S, GUO T, WANG Q, GONG J, LAHAYE L, BODIN J-C, NYACHOTI M, LIU S, YANG C. Development of novel microparticles for effective delivery of thymol and lauric acid to pig intestinal tract. Journal of Agricultural and Food Chemistry, 2018, 66(37):9608-9615. DOI: 10.1021/acs.jafc.8b02808.
doi: 10.1021/acs.jafc.8b02808 |
[90] |
HOSSAIN M M, JAYARAMAN B, KIM S C, LEE K Y, KIM I H, NYACHOTI C M. Effects of a matrix-coated organic acids and medium-chain fatty acids blend on performance, and in vitro fecal noxious gas emissions in growing pigs fed in-feed antibiotic-free diets. Canadian Journal of Animal Science, 2018, 98(3):433-442. DOI: 10.1139/cjas-2017-0053.
doi: 10.1139/cjas-2017-0053 |
[1] | LIN XiaJing,CHEN Fang,JIANG ShouQun,JIANG ZongYong. Effects of Soybean Isoflavones on Growth Performance, Antioxidant Performance and Intestinal Morphology of Early-Weaned Piglets [J]. Scientia Agricultura Sinica, 2020, 53(10): 2101-2111. |
[2] | ZHOU Min, ZHOU XueMei, YANG LiJie, HUANG LiBo, FENG Lei, SHAO MingHui, YANG Chen, YANG WeiRen, YANG ZaiBin, JIANG ShuZhen. Effects of Zearalenone on Expression of Heat Shock Protein 70 and Morphology of Uterus Tissues of Post-Weaning Piglets [J]. Scientia Agricultura Sinica, 2018, 51(4): 778-788. |
[3] | ZHU Hong-long, YANG Jie, LI Jian, PAN Xiao-qing, QIN Feng, ZHOU Zhong-kai, FENG Guo-xing, GU Hong-ru. Comparative Analysis of Growth Performance, Behavior, and Salivary Cortisol Hormone of Piglets Housed in Two Rearing Environments [J]. Scientia Agricultura Sinica, 2016, 49(7): 1382-1390. |
[4] | LU Yang, HU Er-yong, ZI Zheng-hao, SUN Guo-rong, XIA Dong . Improvement of the Effects of Phytase Application by Lowering the High Level of Copper in Piglets Diets [J]. Scientia Agricultura Sinica, 2015, 48(14): 2884-2890. |
[5] | YANG Feng-juan, ZENG Xiang-fang, QIAO Shi-yan. Effect of Lactobacillus reuteri I5007 on Intestinal Morphology, Disaccharidase Activity and Tight Junction Protein Expression in Newborn Piglets [J]. Scientia Agricultura Sinica, 2014, 47(22): 4506-4515. |
[6] | JIANG Shu-zhen, SUN Hua, HUANG Li-bo, YANG Zai-bin, WANG Shu-jing, LIU Fa-xiao, F. Chi. Effects of Zearalenone Contaminated Diets on Serum Metabolite and Histopathology of Liver and Kidney in Weaned Piglets [J]. Scientia Agricultura Sinica, 2014, 47(18): 3708-3715. |
[7] | ZHAO Jiao, ZHOU Zhao-Hong, LIANG Xiao-Fang, MAO Xiang-Bing, CHEN Dai-Wen, YU Bing. Effects of GSPs and VE on Growth Performance, Serum Redox Status and Hepatic Oxidative Damage in Piglets Under Oxidative Stress [J]. Scientia Agricultura Sinica, 2013, 46(19): 4157-4164. |
[8] | WANG Yuan-Xiao, ZHANG Li-Li, ZHOU Gen-Lai, WANG Tian. Effect of Supplement of Soya Lecithine on Mucosal Anti-Oxidation and Heat Shock Protein 70 Content in Intrauterine Growth Retardation Piglets [J]. Scientia Agricultura Sinica, 2012, 45(13): 2711-2717. |
[9] |
FU Da-bo,WANG You-wei,HOU Yong-qing,DING Bin-ying,WANG Lei,LIU Yu-lan,ZHU Hui-ling . Effects of α-Ketoglutarate on Muscle Energy Metabolism in Weanling Pigs Chronically Challenged with Lipopolysaccharide |
[10] |
ZHU Ye-meng,XIE Zheng-jun,LI Yun-tao,HAN Xin-yan . Effects of Chitosan-Copper on Growth Performance and Intestinal Flora and Its Morphology in Weanling Piglets [J]. Scientia Agricultura Sinica, 2011, 44(2): 387-394 . |
[11] | DING Yue-Yun, ZHOU Fen, ZHANG Wei, ZHANG Chen-Hua, YIN Zong-Jun. Effects of Astragalus, Angelica, Rhodiola on the Growth Performance and Some Physiological Functions of Weaning Piglets [J]. Scientia Agricultura Sinica, 2011, 44(16): 3469-3476. |
[12] |
YAN Fu-yong,YIN Yu-long,KONG Xiang-feng,YIN Fu-gui,YANG Feng,ZHANG Yu-zhe . Effects of Dietary Supplementation of Acanthopanax senticosus Extracts on Weanling Stress in Piglets #br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4490-4496 . |
[13] | . The relationship between PCV-2 location and apoptosis in lymph nodes of pigs infected PCV-2 [J]. Scientia Agricultura Sinica, 2008, 41(1): 237-242 . |
[14] | ,,,,,. Effect of Zinc Resources and Levels on Serum Hormone Levels of Weanling Stress Piglets [J]. Scientia Agricultura Sinica, 2006, 39(06): 1241-1247 . |
|