Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (2): 251-259.doi: 10.3864/j.issn.0578-1752.2016.02.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Exogenous Nitric Oxide on Photosynthesis of Maize Seedlings Under Drought Stress

SHAO Rui-xin1, 2, LI Lei-lei1, ZHENG Hui-fang1, XIN Long-fei1, SU Xiao-yu1, RAN Wu-ling1, YANG Qing-hua1   

  1. 1Agronomy College of Henan Agriculture University/State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    2Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang 453002, Henan
  • Received:2015-05-11 Online:2016-01-16 Published:2016-01-16

Abstract: 【Objective】To evaluate the effects of exogenous nitric oxide on the photosynthesis of maize (Zea mays L.) under drought stress. 【Method】The hydroponic experiment was conducted in a growth chamber with the Zhuyu 309 as the material. After being pretreated with sodium nitroprusside (SNP) for three days, these materials were simulated drought stress with 20% PEG-6000 for another three days. The changes of maize seedling’s growth, gas exchange, and chlorophyll fluorescence parameters, chloroplast ultrastructure and expression of D1 protein were investigated; 【Result】The photosynthetic rate (Pn), stomatal conductance (Gs), PSII maximum photochemical efficiency (Fv/Fm), PSII potential activity (Fv/Fo) were decreased by 68.4%, 87.2%, 15.8%, 31.3%,respectively under drought stress; The parameters of relative variable fluorescence intensity at J-step (Vj) and dissipated energy flux per reaction center (DIo/RC) increased by 20.9% and 21.2%. The ultrastructure of chloroplast in the leaf was destroyed and the structure of stacked grana was disintegrated. Moreover, the osmiophilic grains increased and the chloroplast was slowly divorced from the cell wall due to the drought. The content of D1 protein decreased significantly with Western-blotting analysis. However, with the treatment of SNP and then drought stress, the Pn, Gs, Fv/Fm, Fv/Fo were increased by 56.6 %, 202.5 %, 15.8 %, 30.7 % and the Vj decreased by 22.7% and 25.4% compared with the drought stress. The thylakoid lamellae arranged regularly and the grana were clear; and the relative amounts of D1 protein increased by 94.7%. The above changes were related to the increased NO content after SNP pretreatment under drought condition.【Conclusion】These results suggested that NO is involved in regulating the D1 protein expression and stabilizing the structure and function of PSII reaction centers to improve photosynthesis and growth of maize seedlings, which improved the adaptability of maize seedlings to drought stress. 

Key words: maize, drought stress, nitric oxide, D1 protein, photosynthesis, chloroplast ultrastructure

[1]    山仑. 科学应对农业干旱. 干旱地区农业研究, 2011, 29(2): 1-5.
Shan L. To cope rationally with agricultural drought. Agricultural Research in the Arid Areas, 2011, 29(2): 1-5. (in Chinese)
[2]    Ghotbi-Ravandi A A, Shahbazi M, Shariati M, Mulo P. Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. Journal of Agronomy and Crop Science, 2014, 200(6): 403-415.
[3]    Teng K Q, Li J Z, Liu L, Han Y C, Du Y X, Zhang J, Sun H Z, Zhao Q Z. Exogenous ABA induces drought tolerance in upland rice: The role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress. Acta Physiologiae Plantarum, 2014, 36(8): 2219-2227.
[4]    Sperdouli I, Moustakas M. A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit. Journal of Plant Physiology, 2014, 171(8): 587-593.
[5]    邵瑞鑫, 信龙飞, 杨青华, 上官周平. NO干旱条件下小麦幼苗PSII功能特性的调节效应. 作物学报, 2012, 38(9): 1710-1715.
Shao R X, Xin L F, Yang Q H, Shangguan Z P. Modulation of exogenous nitric oxide on photosystem II functions in wheat seedlings under drought stress. Acta Agronomica Sinica, 2012, 38(9): 1710-1715. (in Chinese)
[6]    张霖, 赵翔, 王亚静, 张骁. NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35(8): 1491-1499.
Zhang L, Zhao X, Wang Y J, Zhang X. Crosstalk of NO with Ca2+ in stomatal movement in Vicia faba guard cells. Acta Agronomica Sinica, 2009, 35(8): 1491-1499. (in Chinese)
[7]    刘建新, 王金成, 王瑞娟, 贾海燕. 外源一氧化氮对渗透胁迫下黑麦草幼苗光合和生物发光特性的影响. 草业学报, 2013, 22(1): 210-216.
Liu J X, Wang J C, Wang R J, Jia H Y. Effects of exogenous nitric oxide on photosynthetic and bioluminescent characteristics in ryegrass seedlings under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 210-216. (in Chinese)
[8]    赵滢, 艾军, 王振兴, 秦红艳, 张庆田, 徐培磊, 刘迎雪, 沈育杰. 外源 NO对NaCl胁迫下山葡萄叶片叶绿素荧光和抗氧化酶活性的影响. 核农学报, 2013, 27(6): 867-872.
Zhao Y, Ai J, Wang Z X, Qin H Y, Zhang Q T, Xu P L, Liu Y X, Shen Y J. Effects of exogenous nitric oxide on chlorophyll fluorescence and antioxidant enzymes activity in amur grape (Vitis Amurensis Rupr) leaves under salt stress. Journal of Nuclear Agricultural Sciences, 2013, 27(6): 867-872. (in Chinese)
[9]    樊怀福, 杜长霞, 朱祝军. 外源NO对低温胁迫下黄瓜幼苗生长, 叶片膜脂过氧化和光合作用的影响. 浙江农业学报, 2011, 23(3): 538-542.
Fan H F, Du C X, Zhu Z J. Effects of exogenous nitric oxide on plant growth,membrane lipid peroxidation and photosynthesis in cucumber seedling leaves under low temperature. Acta Agriculturae Zhejiangensis, 2011, 23(3): 538-542. (in Chinese)
[10]   李秀, 巩彪, 王允, 徐坤. 高温胁迫下外源一氧化氮对生姜叶片多胺代谢及PSII的调控作用. 中国农业科学, 2013, 47(6): 1171-1179.
Li X, Gong B, Wang Y, Xu K. Heat stress mitigation by exogenous nitric oxide application involves polyamine metabolism and PSII physiological strategies in ginger leaves. Scientia Agricultura Sinica, 2013, 47(6): 1171-1179. (in Chinese)
[11]   敬岩, 孙宝腾, 符建荣. 一氧化氮改善铁胁迫玉米光合组织结构及其活性. 植物营养与肥料学报, 2007, 13(5): 809-815.
Jing Y, Sun B T, Fu J R. Nitric oxide improves photosynthetic structure and activity in iron-deficient maize. Plant Nutrition and Fertilizcr Science, 2007, 13(5): 809-815. (in Chinese)
[12]   Fan Q J, Liu J H. Nitric oxide is involved in dehydration /drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Reports, 2012, 31(1): 145-154.
[13]   Garc?´a-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204.
[14]   曹慧, 王孝威, 邹岩梅, 束怀瑞. 外源 NO 对干旱胁迫下平邑甜茶幼苗叶绿素荧光参数和光合速率的影响. 园艺学报, 2011, 38 (4) : 613-620.
Cao H, Wang X W, Zou Y M, Shu H R. Effects of exogenous nitric oxide on chlorophyll fluorescence parameters and photosynthesis rate in Malus hupehensis seedlings under water stress. Acta Horticulturae Sinica, 2011, 38(4): 613-620. (in Chinese)
[15]   Shao R, Wang K, Shangguan Z. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: Probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology, 2010, 167(6): 472-479.
[16]   胡秀丽, 李艳辉, 杨海荣, 刘全军, 李潮海. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力. 作物学报, 2010, 36(4): 636-644.
Hu X L, Li Y H, Yang H R, Liu Q J, Li C H. Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves. Acta Agronomica Sinica, 2010, 36(4): 636-644. (in Chinese)
[17]   Luo J K, Sun S B, Jia L J, Chen W, Shen Q R. The mechanism of nitrate accumulation in pakchoi [Brassica campestris L. ssp. Chinensis (L.)]. Plant and Soil, 2006, 282(1/2): 291-300.
[18]   郭军伟, 魏慧敏, 吴守锋, 杜林方. 低温对水稻类囊体膜蛋白磷酸化及光合机构光能分配的影响. 生物物理学报, 2006, 22(3): 197-202.
Guo J W, Wei H M, Wu S F, Du L F. Effects of low temperature on the distribution of excitation energy in photosystem and the phosphorylation of thylakoid membrane proteins in rice. Acta Biophysica Sinica, 2006, 22(3): 197-202. (in Chinese)
[19]   邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995.
Zou Q. Experimental Guidance of Plant Physiology and Biochemistry. Beijing: China Agriculture Press, 1995. (in Chinese)
[20]   Yamashita A, Nijo N, Pospisil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y. Quality control of photosystem II reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. Journal of Biological Chemistry, 2008, 283(42): 28380-28391.
[21]   Barnabás B, Jäger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 2008, 31(1): 11-38.
[22]   Zhang L, Zhao X, Wang Y J, Zhang X. Crosstalk of nitric oxide with ca2+ in stomatal movement in vicia faba guard cells. Acta Agronomica Sinica, 2009, 35(8): 1491-1499.
[23]   闻玉, 赵翔, 张骁. 水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响. 作物学报, 2008, 34(2): 344-348.
Wen Y, Zhao X, Zhang X. Effects of nitric oxide on root growth and absorption in wheat seedlings in response to water stress. Acta Agronomica Sinica, 2008, 34(2): 344-348. (in Chinese)
[24]   赵翔, 汪延良, 王亚静, 王茜丽, 张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜 K+通道的调控. 作物学报, 2008, 34(11): 1970-1976.
Zhao X, Wang Y L, Wang Y J, Wang Q L, Zhang X. Effects of exogenous Ca2+ on stomatal movement and plasma membrane K+ channels of Vicia faba guard cell under salt stress. Acta Agronomica Sinica, 2008, 34(11): 1970-1976. (in Chinese)
[25]   秦玉芝, 邢铮, 邹剑锋, 何长征, 李炎林, 熊兴耀. 持续弱光胁迫对马铃薯苗期生长和光合特性的影响. 中国农业科学, 2014, 47(3): 537-545.
Qin Y Z, Xing Z, Zou J F, He C Z, Li Y L, Xiong X Y. Effects of sustained weak light on seedling growth and photosynthetic characteristics of potato seedlings. Scientia Agricultura Sinica, 2014, 47(3): 537-545. (in Chinese)
[26]   Gao J, Wang N, Xu S S, Wang Y, Wang G X. Exogenous application of trehalose induced H2O2 production and stomatal closure in Vicia faba. Biologia Plantarum, 2013, 57(2): 380-384.
[27]   Gao Z, Lin Y, Wang X, Wei M, Yang F, Shi Q. Sodium nitroprusside (SNP) alleviates the oxidative stress induced by NaHCO3 and protects chloroplast from damage in cucumber. African Journal of Biotechnology, 2014, 11(27): 6974-6982.
[28]   Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[29]   凌丽俐, 彭良志, 王男麒, 邢飞, 江才伦, 曹力, 淳长品. 缺镁胁迫对纽荷尔脐橙叶绿素荧光特性的影响. 生态学报, 2013, 33(1): 71-78.
Ling L L, Peng L Z, Wang N Q, Xing F, Jiang C L, Cao L, Chun C P. Influence of magnesium deficiency on chlorophyll fluorescence characteristic in leaves of new hall navel orange. Acta Ecologica Sinica, 2013, 33(1): 71-78. (in Chinese)
[30]   卞佃侠, 朱建军, 柏新富. 脱水方式对单叶蔓荆叶绿素荧光特性的影响. 安徽农业科学, 2010 (6): 3214-3216.
Bian D X, Zhu J J, Bai X F. Effect of dehydration method on chlorophyll fluorescence characteristics in vitex trifolia. Journal of Anhui Agricultural Sciences, 2010(6): 3214-3216. (in Chinese)
[31]   张会慧, 张秀丽, 许楠, 贺国强, 金微微, 岳冰冰, 李鑫, 孙广玉. 外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响. 应用生态学报, 2011, 22(5): 1195-1200.
Zhang H H, Zhang X L, Xu N, He G Q, Jin W W, Yue B B, Li X, Sun G Y. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem II under drought stress. Chinese Journal of Applied Ecology, 2011, 22(5): 1195-1200. (in Chinese)
[32]   Batra N G, Sharma V, Kumari N. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 2014, 9(1): 712-721.
[33]   Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1993, 1143(2): 113-134.
[34]   Nishiyama Y, Allakhverdiev S I, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 2011, 142(1): 35-46.
[35]   Hwang H J, Kim E M, Rhew T H, Lee C H. Reversible photoinactivation of photosystem II during desiccation of barley (Hordeum vulgare L. cv. Albori) leaves in the light. Journal of Plant Biology, 2004, 47(2): 142-148.
[36]   Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, Vitry C Vallon O, Choquet Y, Wollman F A. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. The Plant Cell Online, 2014, 26(1): 353-372.
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[4] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[9] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[10] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[11] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[12] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[13] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!