Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (1): 186-194.doi: 10.3864/j.issn.0578-1752.2016.01.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Effects of Constant Moderate Temperatures on the Diversity of the Intestinal Microbial Flora of Broilers

PENG Qian-qian1,2, WANG Xue-min2, ZHANG Min-hong1, FENG Jing-hai1, ZHEN Long1,2, ZHANG Shao-shuai1   

  1. 1State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
    2College of Agriculture, Hebei University of Engineering, Handan 056021, Hebei
  • Received:2015-05-18 Online:2016-01-01 Published:2016-01-01

Abstract: 【Objective】The objective of this study is to provide useful information for healthy breeding on broilers. Ambient temperature is one of the important factors affecting the poultry intestinal flora; as the ambient temperature changes, poultry normal intestinal flora will be affected. This study was carried out to investigate the effects of constant moderate temperatures on structural diversity of cecal bacteria in broilers. 【Method】One hundred and forty four 22-day-old Arbor Acres (AA) broilers were assigned to three environment chambers, each chamber contained six cages with eight birds per cage (four males and four females), with each cage used as a replicate. The pre-test period lasted for 7 days and broilers were kept at 21 and 60% relative humidity. When broilers were 29-day-old, the temperatures of each environmental chamber were gradually regulated to 21, 26 and 31, respectively, while maintaining the relative humidity at 60% and both kept constant until the end of the experiment. The trial period lasted for 14 days. On day 21 and 42, one birds from each replicate were randomly selected and killed, cecal contents were aseptically collected, placed in a centrifugal tube, rapidly frozen in liquid nitrogen, and stored at -80. The bacterial community and diversity in the ceacal digesta of broilers at the 7 and 14 days of constant moderate temperatures was studied by using 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). 【Result】 (1) The number of PCR-denaturing gradient gel electrophoresis bands of 26 and 31 group was lower than 21 group, and 31 group was lower than 26, at 31, broiler cecal DGGE bands at the 14 days are significantly lower than at the 7 days. (2) The dendrograms and Shannon-Weaver indices revealed that diversity of the intestinal microbial flora at 26 and 31 group was less than at 21; at 31,14 days are significantly lower than at the 7 days; (3) DGGE profiles stripe sequence analysis showed that Alistipes timonensis and Barnesiella viscericola were predominant in the 21, 26 and 31 groups, The special bacteria in 21, 26 and 31 groups were Ruminococus faecis, Lutispora thermophila and Faecalibacterium prausnitzii respectively, 31 group were Gemmiger formicilis.【Conclusion】Compared with 21, continuous treatment with constant moderate temperature (26 and 31) can significantly impact the community structure and diversity of intestinal flora in broilers, and the extent of effect varies with the different temperatures.

Key words: moderate temperatures, broiler, microbiota, denaturing gradient gel electrophoresis, diversity

[1]    Mackie R I, White B A, Isaacson R E. Gastrointestinal microbes and host interactions. New York: Chapman & Hall, 1997.
[2]    李永洙, 陈常秀, Cui Y Q. 热应激对蛋鸡肠道菌群结构、碱性磷酸酶活性及氨基酸转运载体mRNA表达丰度的影响. 中国农业科学, 2013, 46(20): 4378-4387.
Li Y Z, Chen C X, Cui Y Q. Effect of heat stress on the intestinal flora structure and alkaline phosphatase activities and mRNA expression of amino acid transporters of layer. Scientia Agricultura Sincia, 2013, 46(20): 4378-4387. (in Chinese)
[3]    贺绍君, 赵书景, 李静, 车传燕, 戴四发, 刘德义. 甜菜碱对热应激肉鸡生长性能、十二指肠消化酶活性及盲肠微生物区系的影响. 动物营养学报, 2014, 26(12): 3731-3739.
He S J, Zhao S J, Li J, Che C Y, Dai S F, Liu D Y. Effects of betaine on growth performance, activities of duodenum digestive enzymes and cecal microflora of heat-stressed broilers. Chinese Journal of Animal Nutrition, 2014, 26(12): 3731-3739. (in Chinese).
[4]    罗庆斌. 鸡热应激蛋白HSP70基因的单核苷酸多态研究[D]. 四川: 四川农业大学, 2004.
Lou Q B. The single nueleotide polymorphisms of chicken 70- kilodalton heat shoek pretein (HSP70) gene[D]. Sichuan: Sichuan Agricultural University, 2004. (in Chinese)
[5]    胡春红, 张敏红, 冯京海, 苏红光, 张少帅. 偏热刺激对肉鸡休息姿势行为、生理及生产性能的影响. 动物营养学报, 2015, 27(7): 2070-2076.
Hu C H, Zhang M H, Feng J H, Su H G, Zhang S S. Effects of thermal stimulation on behavior of resting posture, physiology and performance in broilers. Chinese Journal of Animal Nutrition, 2015, 27(7): 2070-2076. (in Chinese)
[6]    甄龙, 石玉祥, 张敏红, 冯京海, 张少帅, 彭骞骞. 持续偏热环境对肉鸡生长性能、糖脂代谢及解偶联蛋白 mRNA 表达的影响. 动物营养学报, 2015, 27(7): 2060-2069.
Zhen L, Shi Y X, Zhang M H, Feng J H, Zhang S S, Peng Q Q. Effects of constant moderate temperatures on performance, glucose and lipid metabolism, expression of uncoupling protein of broilers. Chinese Journal of Animal Nutrition, 2015, 27(7): 2060-2069. (in Chinese)
[7]    Barrow P A. Probiotics for Chickens. Probiotics. Springer, 1992: 225-257.
[8]    Barnes E M, Mead G C, Barnum D A, Harry E G. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British Poultry Science, 1972, 13(3): 311-326.
[9]    Hooper L V, Wong M H, Thelin A, Hansson L, Falk P G, Gordon J I. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505): 881-884.
[10]   尹业师, 王欣. 影响实验小鼠肠道菌群的多因素比较研究. 试验动物科学, 2012, 29(4): 12-18.
Yin Y S, Wang X. Comparative study for factors that affect microbiota colonization in experimental mice. Laboratory Animal Science, 2012, 29(4): 12-18. (in Chinese)
[11]   Konstantinov S R, Zhu W Y, Williams, B A, Tamminga S, de Vos W M, Akkermans Antoon D L. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology, 2003, 43(2003): 225-235.
[12]   Zhu X Y, Zhong T, Pandya Y R D. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124-137.
[13]   Wielen P W J J, Keuzenkamp D A, Lipman L J A, Knapen F, Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecology, 2002, 44(3): 286-293.
[14]   Torok V A, Ophel-Keller K, Loo M, Hughes R J. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology, 2008, 74(3): 783-791.
[15]   王丽凤, 张家超, 马晨, 孙志宏, 付维来, 张和平. 鸡肠道微生物研究进展. 动物营养学报, 2013, 25(3): 494-502.
Wang L F, Zhang J C, Ma C, Sun Z H, Fu W L, Zhang H P. Gut microbiota of chickens: A review. Chinese Journal of Animal Nutrition, 2013, 25(3): 494-502. (in Chinese)
[16]   Gong J, Yu H, Liu T, Gill J J, Chambers J R, Wheatcroft R, Sabour P M. Effects of zinc bacitracin,bird age and access to range on bacterial microbiota in the ileum and caeca of broiler chickens. Journal of Applied Microbiology, 2008, 104(5): 1372-1382.
[17]   Fonseca B B, Beletti M E, Silva M S D, Silva P L D, Quartet I N, Rossi D A. Microbiota of the cecum, ileum morphometry, pH of the crop and performance of broiler chickens supplemented with probiotics. Revista Brasileira De Zootecnia, 2010, 39(8): 1756-1760.
[18]   Lu J, Idris U, Harmon B, Hofacre C, Maurer J J, Lee M D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 2003, 69(11): 6816-6824.
[19]   Amit-Romach E, Sklan D, Uni Z. Microflora ecology of the chicken intestine using 16 S ribosomal DNA primers.Poultry Science, 2004, 83(7): 1093-1098.
[20]   卢庆萍, 张宏福, 姜旭明, 郝婧宇. 不同饲养方式对肉鸡生产性能、肉质性状及肌肉组织学特性的影响. 动物营养学报, 2010, 25(5): 1237-1242.
Lu Q P, Zhang H F, Jiang X M, Hao J Y. Effects of different housing systems on performance, meat quality and muscular histological characteristics of broilers. Chinese Journal of Animal Nutrition, 2010, 25(5): 1237-1242. (in Chinese)
[21]   石宝明, 单安山, 佟建明. 寡聚糖对仔猪肠道菌群及生长性能影响的研究. 东北农业大学学报, 2000, 31(3): 261-269.
Shi B M, Shan A S, Tong J M. Effect of dietary oligosaccharides on growth performance and intestinal microbial populations of piglets. Journal of Northeast Agricultural University, 2000, 31(3): 261-269. (in Chinese)
[22]   张敏红, 苏红光, 冯京海, 唐湘方. 采集用于建立肉鸡生活环境舒适性评价模型数据的方法和专用装置:中国, CN103404447A[P/OL]. 2015-11-18.
Zhang M H, Su H G, Feng J H, Tang X F. The method of collecting chickens living environment for establishing comfort evaluation model data and special equipment: China, CN103404447A[P/OL]. 2015-11-18. (in Chinese)
[23]   Wen H S. Plant molecular biology, a laboratory manual. Plant Science, 1997, 124(2): 223.
[24]   Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
[25]   van Orsouw N J, Li D, Vijg J. Denaturing gradient gel electrophoresis (DGGE) increases resolution and informativity of Alu-directed inter-repeat PCR. Molecular and Cellular Probes, 1997, 11(2): 95-101.
[26]   Netherwood T, Gilbert H J, Parker D S, Donnell A G. Probiotics shown to change bacterial community structure in the avian gastrointestinal tract. Applied and Environmental Microbiology, 1999, 65(11): 5134-5138.
[27]   李永洙. 利用PCR-DGGE方法分析不同鸡群的盲肠微生物菌群结构变化. 生态学报, 2011, 31(21): 6513-6521.
Li Y Z. Structural change analysis of cecal bacterial flora in different poultry breeds using PCR-DGGE. Acta Ecologica Sinica, 2011, 31(21): 6513-6521. (in Chinese)
[28]   倪学勤, Joshua G, Hai Y, 曾东,Shayan S, 周小秋. 采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性. 畜牧兽医学报, 2008, 42(7): 955-961.
Ni X Q, Gong Joshua, Yu H, Zeng D, Sharif Shayan, Zhou X Q. The bacterial community and diversity in the layer gastrointestinal tract:from crop to cecum analyzed by PCR-DGGE. Acta Veterinaria et Zootechnica Sinica, 2008, 42(7): 955-961. (in Chinese)
[29]   姚琨, 张日俊. 肉仔鸡后肠道菌群多样性及其演替规律的研究//中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集. 杭州.2008.
Yao K, Zhang R J. Diversity and succession regulations of microbiota in retral intestine of broiler chickens//Tenth Symposium of Animal Nutrition Branch of Chinese Association of Animal Science and Veterinary Medicine. Hangzhou.2008. (in Chinese)
[30]   Gong J H, Si W D, Forster R J, Huang R L, Yu H, Yin Y L, Yang C B, Han Y M. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 2007, 59(1): 147-157.
[31]   李永洙, 李进, 张宁波, 陈常秀, Cui Y. 热应激环境下蛋鸡肠道微生物菌群多样性. 生态学报, 2015, 35(5): 1601-1609.
Li Y Z, Li J, Zhang N B, Chen C X, Cui Y. Diversity analysis of the intestinal microbial flora of laying hens under heat stress. Acta Ecologica Sinica, 2015, 35(5): 1601-1609. (in Chinese)
[32]   Zhou H, Gong J, Brisbin J T, Yu H, Sanei B, Sabour P, Sharf S. Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique. Poultry Science, 2007, 86(12): 2541-2549.
[33]   Hansen J, Gulatia A, Sartor R B. Therole of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology, 2010, 26(6): 564-571.
[34]   Rashid H S, Huwaida E M, Ibrahim A Y. Effect of dietary protein level and strain on growth performance of heat stressed broiler chicks. International Journal of Poultry Science, 2012, 11(10): 649-653.
[35]   Hooper L V, Macpherson A J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, 2015, 15(5): 329.
[36]   Gong J, Si W, Forster R J, Huang R, Yu H, Yin Y, Yang C, Han Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 2007, 59(1): 147 -157.
[37]   呙于明, 刘丹, 张炳坤. 家禽肠道屏障功能及其营养调控. 动物营养学报, 2014, 26(10): 3091-3100.
Guo Y M, Liu D, Zhang B K. Intestinal barrier of poultry:function and modulation. Chinese Journal of Animal Nutrition, 2014, 26(10): 3091-3100. (in Chinese).
[38]   Jin L Z, Ho Y W, Ali M A, Abdullah N, Jalaludin S. Effect of adherent Lactobacillus spp. on in vitro adherence of Salmonellae to the intestinal epithelial cells of chicken. Journal of Applied Bacteriology, 1996, 81(2) : 201-206.
[39]   Swennen Q, Delezie E, Collin A, Decuypere E, Buyse J. Further investigations on the role of diet-induced thermogenesis in the regulation of feed intake in chickens: comparison of age-matched broiler versus layer cockerels. Poultry Science, 2007, 86(5): 895-903.
[40]   Duncan S H, Hold G L, Harmsen H, Stewart C S, Flint H J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. Nov. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 2141-2146.
[41]   Ben-Amor K, Heilig H, Smidt H, Vaughan E E, Abee T, de Vos W M. Genetic diversity of viable,injured,and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Applied and Environmental Microbiology, 2005, 71(8): 4679-4689.
[42]   Louis P, Flint H. Diversity,metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 2009, 294(1): 1-8.
[43]   Pryde S E, Duncan S H, Hold G L, Stewart C S, Flint H J. The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 2002, 217: 133-139.
[44]   Morris E J, Cole O J. Relationship between cellulolytic activity and adhesion to cellulose in Ruminococus Albus. Journal of General Microbiology, 1987, 133(4): 1023.
[1] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[2] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[3] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[4] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[7] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[8] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[9] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[10] YANG Jing,ZHANG He,LI ShuangShuang,LI GuiHua,ZHANG JianFeng. Effects of Amendments on Soil Fauna Community Characteristics in a Fluvo-Aquic Sandy Soil [J]. Scientia Agricultura Sinica, 2022, 55(16): 3185-3199.
[11] ZHANG ChenXi, TIAN MingHui, YANG Shuo, DU JiaQi, HE TangQing, QIU YunPeng, ZHANG XueLin. Effects of Arbuscular Mycorrhizal Fungi Inoculant Diversity on Yield, Phosphorus and Potassium Uptake of Maize in Acidic Soil [J]. Scientia Agricultura Sinica, 2022, 55(15): 2899-2910.
[12] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[13] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[14] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[15] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!