Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (14): 2837-2849.doi: 10.3864/j.issn.0578-1752.2022.14.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage

DING Peng1(),TONG YueYue1,LIU HuiChao1,YIN Xin1,LIU JiangJun2,HE Xi1,SONG ZeHe1,ZHANG HaiHan1()   

  1. 1. College of Animal Science and Technology, Hunan Engineering Research Center of Poultry Production Safety, Engineering Research Center for Feed Safety and Efficient Utilization of Ministry of Education, Hunan Co-Innovation Center for Livestock and Poultry safety, Hunan Agricultural University, Changsha 410128
    2. YongZhou Vocational Technical College, Yongzhou 425000, Hunan
  • Received:2021-06-16 Accepted:2022-05-01 Online:2022-07-16 Published:2022-07-26
  • Contact: HaiHan ZHANG E-mail:shkdingpeng@163.com;zhhous@163.com

Abstract:

【Objective】 The purpose of this experiment was to study the dynamic changes and functions of the yolk microbiota during the hatching of yellow-feathered broiler fertilized eggs, and the influence of yolk microbiota on the early intestinal colonization of embryos. 【Method】 One hundred fertilized eggs of 35-week-old yellow-feathered broilers were selected and placed in automatic incubators for incubation. Before hatching, the incubator was cleaned and disinfected, and the internal ventilation system and humidity control system were checked for normal operation. The incubation temperature was controlled at (37.5±1) ℃ and the humidity at (60±10)%. Six breeder eggs were randomly selected on days 7, 11, 15 and 19 of incubation to collect the yolk samples by stripped the eggshell and allantoic membrane in a sterile operation table, exposed the embryo to the yolk sac and then pierced it through a sterile syringe. Samples were rapidly snap frozen in liquid nitrogen after collection and subsequently transferred to a -80 ℃ refrigerator for storage pended test. The yolk microorganisms were subjected to DNA extraction, and 16s rDNA sequencing and sequence analysis were performed. 【Result】 1) A total of 4 305 OTUs were annotated in the yolk of fertilized eggs, and a total of 18 Phyla, 34 Classes, 53 Orders, 89 Families and 126 Genera were found in the yolk and intestine at different incubation time points. The phylum level mainly included Proteobactreia, Firmicutes, Bacteroidetes, Verrucomicrobia, etc. The genus level is dominated by Pelomonas, Ralstonia, Aquabacterium, Faecalibacterium, etc; 2) Significant differences in the Chao1 index (P = 0.027) and Shannan index (P = 0.043) were observed in the Alpha diversity of yolk microbiota at different incubating stages. The yolk microbiota tended to stabilize with incubation time, while the relative abundance of Akkermansia in the yolk increased continuously to 0.53%, 0.84%, 1.43% and 3.10% at E07, E11, E15 and E19, respectively. At the genus level, the yolk microbiota mainly included Pelomonas, Ralstonia, Aquabacterium and so on; 3) The functions of yolk microbiota in yellow-feathered broiler breeding eggs mainly include carbohydrates metabolism, amino acids metabolism, lipids metabolism, cofactors and vitamins metabolism; 4) Both the yolk microbiota and intestinal microbiota of fertilized eggs were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia at the phylum level, and Pelomonas, Ralstonia, Aquabacterium and Akkermansia at the genus level. 【Conclusion】There are abundant microbial populations in the yolk of yellow-feathered broiler fertilized eggs, which play an important role in the absorption and metabolism of yolk nutrients and the early microbial colonization of embryo intestine.

Key words: yellow-feather broiler, embryo, yolk, intestine, nutritional metabolism

Fig. 1

Composition of yolk microbiota and intestinal microbiota in the chicken embryo and the abundant microbes at each level (phylum, class, order, family, and genus)"

Fig. 2

Embryonic yolk microbial difference at different developmental stages of yellow-feathered broilers A: PCA analysis: Each point represents a sample, and points of different colors indicate different groups; B: alpha diversity analysis: Each panel corresponds to an alpha diversity index, which is identified in the top area. In each panel, the abscissa is the group label, and the ordinate is the value of the corresponding alpha diversity index; C: The relative abundance of yolk microbiota at the phylum level; D: The relative abundance of yolk microbiota at the genus level; E: Venn: The Venn diagram shows the core microbes shared at different stages of chicken embryo development; F: LEfSe analysis: Taxonomic cladogram generated from LEfSe showing landmark microbiota profile of 4 stages of chicken embryo development. CL represents yellow-feathered broiler, Y represents yolk, and E represents embryonic stages"

Fig. 3

Functional profiles of the microbial community in yolk of yellow-feathered broilers. The abscissa is the abundance of the functional pathway, the ordinate is the functional classification of KEGG in the second level, and the rightmost is the first level of the pathway"

Fig. 4

Comparison of embryonic microbiota between yolk and intestine of yellow-feathered broilers A: PCA analysis: Each point represents a sample, and points of different colors indicate different groups; B: alpha diversity analysis: Each panel corresponds to an alpha diversity index, which is identified in the top area. In each panel, the abscissa is the group label, and the ordinate is the value of the corresponding alpha diversity index; C: The relative abundance of yolk microbiota and intestine microbiota at the phylum level; D: The relative abundance of yolk microbiota and intestine microbiota at the genus level; E: LEfSe analysis: Taxonomic cladogram generated from LEfSe showing landmark microbiota profile of 4 stages of chicken embryo development. CL represents yellow-feathered broiler, Y represents yolk, and E represents embryonic stages, I represents intestine"

Fig. 5

Early changes of intestinal microbiota in chicken embryo of yellow-feathered broilers A: PCA analysis: Each point represents a sample, and points of different colors indicate different groups; B: alpha diversity analysis: Each panel corresponds to an alpha diversity index, which is identified in the top area. In each panel, the abscissa is the group label, and the ordinate is the value of the corresponding alpha diversity index; C: The relative abundance of intestine microbiota at the phylum level; D: The relative abundance of intestine microbiota at the genus level; E: LEfSe analysis: Taxonomic cladogram generated from LEfSe showing landmark microbiota profile of 4 stages of chicken embryo development. CL represents yellow-feathered broiler, and E represents embryonic stages, I represents intestine"

[1] NYANGAHU D D, LENNARD K S, BROWN B P, DARBY M G, WENDOH J M, HAVYARIMANA E, SMITH P, BUTCHER J, STINTZI A, MULDER N, HORSNELL W, JASPAN H B. Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome, 2018, 6(1): 124. doi: 10.1186/s40168-018-0511-7.
doi: 10.1186/s40168-018-0511-7
[2] AKINYEMI F T, DING J M, ZHOU H, XU K, HE C, HAN C X, ZHENG Y M, LUO H X, YANG K X, GU C J, HUANG Q Z, MENG H. Dynamic distribution of gut microbiota during embryonic development in chicken. Poultry Science, 2020, 99(10): 5079-5090. doi: 10.1016/j.psj.2020.06.016.
doi: 10.1016/j.psj.2020.06.016
[3] VAN DER WAGT I, DE JONG I C, MITCHELL M A, MOLENAAR R, VAN DEN BRAND H. A review on yolk sac utilization in poultry. Poultry Science, 2020, 99(4): 2162-2175. doi: 10.1016/j.psj.2019.11.041.
doi: 10.1016/j.psj.2019.11.041
[4] GIVISIEZ P E N, MOREIRA FILHO A L B, SANTOS M R B, OLIVEIRA H B, FERKET P R, OLIVEIRA C J B, MALHEIROS R D. Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poultry Science, 2020, 99(12): 6774-6782. doi: 10.1016/j.psj.2020.09.074.
doi: 10.1016/j.psj.2020.09.074
[5] 王文娟, 孙冬岩, 孙笑非. 生命早期肠道菌群的定殖对免疫系统的影响. 饲料研究, 2017(1): 24-27. doi: 10.13557/j.cnki.issn1002-2813.2017.01.006.
doi: 10.13557/j.cnki.issn1002-2813.2017.01.006
WANG W J, SUN D Y, SUN X F. Effects of intestinal flora colonization on immune system in early life. Feed Research, 2017(1): 24-27. doi: 10.13557/j.cnki.issn1002-2813.2017.01.006. (in Chinese)
doi: 10.13557/j.cnki.issn1002-2813.2017.01.006
[6] RAMETTE A. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 2007, 62(2): 142-160. doi: 10.1111/j.1574-6941.2007.00375.x.
doi: 10.1111/j.1574-6941.2007.00375.x
[7] MCARDLE B H, ANDERSON M J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 2001, 82(1): 290-297. doi: 10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2.
doi: 10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2
[8] CLARKE K R. Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 1993, 18(1): 117-143. doi: 10.1111/j.1442-9993.1993.tb00438.x.
doi: 10.1111/j.1442-9993.1993.tb00438.x
[9] WARTON D I, WRIGHT S T, WANG Y. Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution, 2012, 3(1): 89-101. doi: 10.1111/j.2041-210x.2011.00127.x.
doi: 10.1111/j.2041-210x.2011.00127.x
[10] HUSON D H, MITRA S, RUSCHEWEYH H J, WEBER N, SCHUSTER S C. Integrative analysis of environmental sequences using MEGAN4. Genome Research, 2011, 21(9): 1552-1560. doi: 10.1101/gr.120618.111.
doi: 10.1101/gr.120618.111
[11] ASNICAR F, WEINGART G, TICKLE T L, HUTTENHOWER C, SEGATA N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ, 2015, 3: e1029. doi: 10.7717/peerj.1029.
doi: 10.7717/peerj.1029
[12] ZAURA E, KEIJSER B J F, HUSE S M, CRIELAARD W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiology, 2009, 9: 259. doi: 10.1186/1471-2180-9-259.
doi: 10.1186/1471-2180-9-259
[13] SEGATA N, IZARD J, WALDRON L, GEVERS D, MIROPOLSKY L, GARRETT W S, HUTTENHOWER C. Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60.
doi: 10.1186/gb-2011-12-6-r60
[14] CHEN Y F, YANG F L, LU H F, WANG B H, CHEN Y B, LEI D J, WANG Y Z, ZHU B L, LI L J. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology (Baltimore, Md), 2011, 54(2): 562-572. doi: 10.1002/hep.24423.
doi: 10.1002/hep.24423
[15] LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A, CLEMENTE J C, BURKEPILE D E, VEGA THURBER R L, KNIGHT R, BEIKO R G, HUTTENHOWER C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9): 814-821. doi: 10.1038/nbt.2676.
doi: 10.1038/nbt.2676
[16] KNIGHTS D, KUCZYNSKI J, CHARLSON E S, ZANEVELD J, MOZER M C, COLLMAN R G, BUSHMAN F D, KNIGHT R, KELLEY S T. Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 2011, 8(9): 761-763. doi: 10.1038/nmeth.1650.
doi: 10.1038/nmeth.1650
[17] DOMINGUEZ-BELLO M G, DE JESUS-LABOY K M, SHEN N, COX L M, AMIR A, GONZALEZ A, BOKULICH N A, SONG S J, HOASHI M, RIVERA-VINAS J I, MENDEZ K, KNIGHT R, CLEMENTE J C. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine, 2016, 22(3): 250-253. doi: 10.1038/nm.4039.
doi: 10.1038/nm.4039
[18] MCKENNEY P T, PAMER E G. From hype to hope: the gut microbiota in enteric infectious disease. Cell, 2015, 163(6): 1326-1332. doi: 10.1016/j.cell.2015.11.032.
doi: 10.1016/j.cell.2015.11.032
[19] WANG Z N, ROBERTS A B, BUFFA J A, LEVISON B S, ZHU W F, ORG E, GU X D, HUANG Y, ZAMANIAN-DARYOUSH M, CULLEY M K, DIDONATO A J, FU X M, HAZEN J E, KRAJCIK D, DIDONATO J A, LUSIS A J, HAZEN S L. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055.
doi: 10.1016/j.cell.2015.11.055
[20] TANG W H W, KITAI T, HAZEN S L. Gut microbiota in cardiovascular health and disease. Circulation Research, 2017, 120(7): 1183-1196. doi: 10.1161/CIRCRESAHA.117.309715.
doi: 10.1161/CIRCRESAHA.117.309715
[21] FISCHBACH M A, SEGRE J A. Signaling in host-associated microbial communities. Cell, 2016, 164(6): 1288-1300. doi: 10.1016/j.cell.2016.02.037.
doi: 10.1016/j.cell.2016.02.037
[22] KOSTIC A D, GEVERS D, SILJANDER H, VATANEN T, HYÖTYLÄINEN T, HÄMÄLÄINEN A M, PEET A, TILLMANN V, PÖHÖ P, MATTILA I, LÄHDESMÄKI H, FRANZOSA E A, VAARALA O, DE GOFFAU M, HARMSEN H, ILONEN J, VIRTANEN S M, CLISH C B, XAVIER R J. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host & Microbe, 2015, 17(2): 260-273. doi: 10.1016/j.chom.2015.01.001.
doi: 10.1016/j.chom.2015.01.001
[23] 丁金梅. 鸡肠道微生物区系的建立和传递特征研究[D]. 上海: 上海交通大学, 2017.
DING J M. Establishment and transmission of gut microbiota in chicken[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
[24] DOMBRE C, GUYOT N, MOREAU T, MONGET P, DA SILVA M, GAUTRON J, RÉHAULT-GODBERT S. Egg serpins: the chicken and/or the egg dilemma. Seminars in Cell & Developmental Biology, 2017, 62: 120-132. doi: 10.1016/j.semcdb.2016.08.019.
doi: 10.1016/j.semcdb.2016.08.019
[25] GAO P F, LIU Y D, LE B Y, QIN B Y, LIU M, ZHAO Y Y, GUO X H, CAO G Q, LIU J F, LI B G, DUAN Z B. A comparison of dynamic distributions of intestinal microbiota between Large White and Chinese Shanxi Black pigs. Archives of Microbiology, 2019, 201(3): 357-367. doi: 10.1007/s00203-019-01620-4.
doi: 10.1007/s00203-019-01620-4
[26] INDIANI C, RIZZARDI K F, CASTELO P M, FERRAZ L F C, DARRIEUX M, PARISOTTO T M. Childhood obesity and firmicutes/ bacteroidetes ratio in the gut microbiota: a systematic review. Childhood Obesity (Print), 2018, 14(8): 501-509. doi: 10.1089/chi.2018.0040.
doi: 10.1089/chi.2018.0040
[27] DAMMS-MACHADO A, MITRA S, SCHOLLENBERGER A E, KRAMER K M, MEILE T, KÖNIGSRAINER A, HUSON D H, BISCHOFF S C. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Research International, 2015, 2015: 806248. doi: 10.1155/2015/806248.
doi: 10.1155/2015/806248
[28] 彭梦玲, 胡文业, 李乃馨, 王菊花, 丁建平, 周杰. 组学技术分析肉鸡胚胎发育过程中肝脏蛋白表达的变化. 畜牧兽医学报, 2020, 51(2): 252-259. doi: 10.11843/j.issn.0366-6964.2020.02.006.
doi: 10.11843/j.issn.0366-6964.2020.02.006
PENG M L, HU W Y, LI N X, WANG J H, DING J P, ZHOU J. The changes of hepatic proteins during chicken embryonic development based on proteomics analysis. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 252-259. doi: 10.11843/j.issn.0366-6964.2020.02.006. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2020.02.006
[29] JANDHYALA S M. Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21(29): 8787. doi: 10.3748/wjg.v21.i29.8787.
doi: 10.3748/wjg.v21.i29.8787
[30] WEI Z S, TERCÉ F, BURCELIN R, NOVIKOV A, SERINO M, CAROFF M. Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie, 2019, 159: 72-80. doi: 10.1016/j.biochi.2019.01.015.
doi: 10.1016/j.biochi.2019.01.015
[31] DE FARIA GHETTI F, OLIVEIRA D G, DE OLIVEIRA J M, DE CASTRO FERREIRA L E V V, CESAR D E, MOREIRA A P B. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. European Journal of Nutrition, 2018, 57(3): 861-876. doi: 10.1007/s00394-017-1524-x.
doi: 10.1007/s00394-017-1524-x
[32] ZHANG T, LI Q Q, CHENG L, BUCH H, ZHANG F M. Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology, 2019, 12(6): 1109-1125. doi: 10.1111/1751-7915.13410.
doi: 10.1111/1751-7915.13410
[33] IPSEN D H, LYKKESFELDT J, TVEDEN-NYBORG P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences: CMLS, 2018, 75(18): 3313-3327. doi: 10.1007/s00018-018-2860-6.
doi: 10.1007/s00018-018-2860-6
[34] 肖熠. 肠道微生物与宿主免疫应答及其互作机制[D]. 雅安: 四川农业大学, 2018.
XIAO Y. The interaction between gut microbiota and the host immune system[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese)
[35] GOMEZ DE AGÜERO M, GANAL-VONARBURG S C, FUHRER T, RUPP S, UCHIMURA Y, LI H, STEINERT A, HEIKENWALDER M, HAPFELMEIER S, SAUER U, MCCOY K D, MACPHERSON A J. The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351(6279): 1296-1302. doi: 10.1126/science.aad2571.
doi: 10.1126/science.aad2571
[36] FUNKHOUSER L J, BORDENSTEIN S R. Mom knows best: the universality of maternal microbial transmission. PLoS Biology, 2013, 11(8): e1001631. doi: 10.1371/journal.pbio.1001631.
doi: 10.1371/journal.pbio.1001631
[37] UNI Z, TAKO E, GAL-GARBER O, SKLAN D. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poultry Science, 2003, 82(11): 1747-1754. doi: 10.1093/ps/82.11.1747.
doi: 10.1093/ps/82.11.1747
[38] UNI Z, GEYRA A, BEN-HUR H, SKLAN D. Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration. British Poultry Science, 2000, 41(5): 544-551. doi: 10.1080/00071660020009054.
doi: 10.1080/00071660020009054
[39] CHEN X W, SUN H X, JIANG F, SHEN Y, LI X, HU X J, SHEN X B, WEI P M. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ, 2020, 8: e8317. doi: 10.7717/peerj.8317.
doi: 10.7717/peerj.8317
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[3] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[4] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[5] SHI TianPei,WANG XinYue,HOU HaoBin,ZHAO ZhiDa,SHANG MingYu,ZHANG Li. Analysis and Identification of circRNAs of Skeletal Muscle at Different Stages of Sheep Embryos Based on Whole Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(3): 642-657.
[6] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[7] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[8] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
[9] WANG XinYue,SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li. The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle [J]. Scientia Agricultura Sinica, 2020, 53(14): 2956-5963.
[10] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[11] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[12] Ran ZHAO,ManJun CAI,YanFang DU,ZuXin ZHANG. Molecular Basis of Kernel Development and Kernel Number in Maize (Zea mays L.) [J]. Scientia Agricultura Sinica, 2019, 52(20): 3495-3506.
[13] ZI XiangDong, LUO Bin, XIA Wei, ZHENG YuCai, XIONG XianRong, LI Jian, ZHONG JinCheng, ZHU JiangJiang, ZHANG ZhengFan. Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq [J]. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589.
[14] YaNan ZHAO,QiangWei LUO,YueJin WANG. Breeding for Grape Germplasm Involved in Seedlessness with Cold-Resistant Using Embryo Rescue [J]. Scientia Agricultura Sinica, 2018, 51(21): 4119-4130.
[15] XIE JunQi, LI Li, SHI You, SHEN Ting, CHEN YuJie, HONG Yang, CAO ChongJiang. The Inhibition Effect of Nano-Antibacterial Packages on the Aging of Milled Rice with Embryo During Storage [J]. Scientia Agricultura Sinica, 2017, 50(19): 3797-3807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!