Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3450-3460.doi: 10.3864/j.issn.0578-1752.2022.17.015
• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles Next Articles
WANG XueJie(),XING Shuang(
),ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai(
)
[1] |
LARA L J, ROSTAGNO M H. Impact of heat stress on poultry production. Animals: An Open Access Journal from MDPI, 2013, 3(2): 356-369. doi: 10.3390/ani3020356.
doi: 10.3390/ani3020356 |
[2] |
SUGIHARTO S, YUDIARTI T, ISROLI I, WIDIASTUTI E, KUSUMANTI E. Dietary supplementation of probiotics in poultry exposed to heat stress-A review. Annals of Animal Science, 2017, 17(3): 591-604. doi: 10.1515/aoas-2016-0062.
doi: 10.1515/aoas-2016-0062 |
[3] |
NAWAB A, IBTISHAM F, LI G H, KIESER B, WU J, LIU W C, ZHAO Y, NAWAB Y, LI K Q, XIAO M, AN L L. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 2018, 78: 131-139. doi: 10.1016/j.jtherbio.2018.08.010.
doi: 10.1016/j.jtherbio.2018.08.010 |
[4] |
FARAG M R, ALAGAWANY M. Physiological alterations of poultry to the high environmental temperature. Journal of Thermal Biology, 2018, 76: 101-106. doi: 10.1016/j.jtherbio.2018.07.012.
doi: 10.1016/j.jtherbio.2018.07.012 |
[5] |
WAITE D W, TAYLOR M W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 2014, 5: 223. doi: 10.3389/fmicb.2014.00223.
doi: 10.3389/fmicb.2014.00223 |
[6] |
WAITE D W, TAYLOR M W. Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 2015, 6: 673. doi: 10.3389/fmicb.2015.00673.
doi: 10.3389/fmicb.2015.00673 |
[7] |
BARKO P C, MCMICHAEL M A, SWANSON K S, WILLIAMS D A. The gastrointestinal microbiome: A review. Journal of Veterinary Internal Medicine, 2018, 32(1): 9-25. doi: 10.1111/jvim.14875.
doi: 10.1111/jvim.14875 |
[8] |
STOKES C R. The development and role of microbial-host interactions in gut mucosal immune development. Journal of Animal Science and Biotechnology, 2017, 8: 12. doi: 10.1186/s40104-016-0138-0.
doi: 10.1186/s40104-016-0138-0 |
[9] |
YADAV S, JHA R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 2019, 10: 2. doi: 10.1186/s40104-018-0310-9.
doi: 10.1186/s40104-018-0310-9 |
[10] |
SUZUKI K, HARASAWA R, YOSHITAKE Y, MITSUOKA T. Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nihon Juigaku Zasshi the Japanese Journal of Veterinary Science, 1983, 45(3): 331-338. doi: 10.1292/jvms1939.45.331.
doi: 10.1292/jvms1939.45.331 |
[11] |
SONG J, XIAO K, KE Y L, JIAO L F, HU C H, DIAO Q Y, SHI B, ZOU X T. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 2014, 93(3): 581-588. doi: 10.3382/ps.2013-03455.
doi: 10.3382/ps.2013-03455 |
[12] |
BURKHOLDER K M, THOMPSON K L, EINSTEIN M E, APPLEGATE T J, PATTERSON J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poultry Science, 2008, 87(9): 1734-1741. doi: 10.3382/ps.2008-00107.
doi: 10.3382/ps.2008-00107 |
[13] | 彭骞骞, 王雪敏, 张敏红, 冯京海, 甄龙, 张少帅. 持续偏热环境对肉鸡盲肠菌群多样性的影响. 中国农业科学, 2016, 49(1): 186-194. |
PENG Q Q, WANG X M, ZHANG M H, FENG J H, ZHEN L, ZHANG S S. Effects of constant moderate temperatures on the diversity of the intestinal microbial flora of broilers. Scientia Agricultura Sinica, 2016, 49(1): 186-194. (in Chinese) | |
[14] |
常双双, 李萌, 厉秀梅, 石玉祥, 张敏红, 冯京海. 日循环变化偏热环境对肉鸡血清脑肠肽和盲肠菌群多样性的影响. 中国农业科学, 2018, 51(22): 4364-4372. doi: 10.3864/j.issn.0578-1752.2018.22.014.
doi: 10.3864/j.issn.0578-1752.2018.22.014 |
CHANG S S, LI M, LI X M, SHI Y X, ZHANG M H, FENG J H. Effects of the daily cycle variation of the moderate ambient temperatures on the serum brain gut peptide and the diversity of caecal microflora in broilers. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372. doi: 10.3864/j.issn.0578-1752.2018.22.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.22.014 |
|
[15] |
WANG X J, FENG J H, ZHANG M H, LI X M, MA D D, CHANG S S. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poultry Science, 2018, 97(6): 2153-2158. doi: 10.3382/ps/pey032.
doi: 10.3382/ps/pey032 |
[16] |
SHI D Y, BAI L, QU Q, ZHOU S S, YANG M M, GUO S N, LI Q H, LIU C. Impact of gut microbiota structure in heat-stressed broilers. Poultry Science, 2019, 98(6): 2405-2413. doi: 10.3382/ps/pez026.
doi: 10.3382/ps/pez026 |
[17] |
LIU G H, ZHU H B, MA T H, YAN Z Y, ZHANG Y Y, GENG Y Y, ZHU Y, SHI Y X. Effect of chronic cyclic heat stress on the intestinal morphology, oxidative status and cecal bacterial communities in broilers. Journal of Thermal Biology, 2020, 91: 102619. doi: 10.1016/j.jtherbio.2020.102619.
doi: 10.1016/j.jtherbio.2020.102619 |
[18] |
WANG G J, LI X M, ZHOU Y, FENG J H, ZHANG M H. Effects of heat stress on gut-microbial metabolites, gastrointestinal peptides, glycolipid metabolism, and performance of broilers. Animals: An Open Access Journal from MDPI, 2021, 11(5): 1286. doi: 10.3390/ani11051286.
doi: 10.3390/ani11051286 |
[19] |
ROSTAGNO M H. Effects of heat stress on the gut health of poultry. Journal of Animal Science, 2020, 98(4): skaa090. doi: 10.1093/jas/skaa090.
doi: 10.1093/jas/skaa090 |
[20] |
HE J, HE Y X, PAN D D, CAO J X, SUN Y Y, ZENG X Q. Associations of gut microbiota with heat stress-induced changes of growth, fat deposition, intestinal morphology, and antioxidant capacity in ducks. Frontiers in Microbiology, 2019, 10: 903. doi: 10.3389/fmicb.2019.00903.
doi: 10.3389/fmicb.2019.00903 |
[21] |
SOHAIL M U, HUME M E, BYRD J A, NISBET D J, IJAZ A, SOHAIL A, SHABBIR M Z, REHMAN H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 2012, 91(9): 2235-2240. doi: 10.3382/ps.2012-02182.
doi: 10.3382/ps.2012-02182 |
[22] |
SEIFI K, REZAEI M, YANSARI A T, RIAZI G H, ZAMIRI M J, HEIDARI R. Saturated fatty acids may ameliorate environmental heat stress in broiler birds by affecting mitochondrial energetics and related genes. Journal of Thermal Biology, 2018, 78: 1-9. doi: 10.1016/j.jtherbio.2018.08.018.
doi: 10.1016/j.jtherbio.2018.08.018 |
[23] |
CHENG Y F, CHEN Y P, CHEN R, SU Y, ZHANG R Q, HE Q F, WANG K, WEN C, ZHOU Y M. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poultry Science, 2019, 98(10): 4767-4776. doi: 10.3382/ps/pez192.
doi: 10.3382/ps/pez192 |
[24] |
CHANG Y, WANG X J, FENG J H, ZHANG M H, DIAO H J, ZHANG S S, PENG Q Q, ZHOU Y, LI M, LI X. Real-time variations in body temperature of laying hens with increasing ambient temperature at different relative humidity levels. Poultry Science, 2018, 97(9): 3119-3125. doi: 10.3382/ps/pey184.
doi: 10.3382/ps/pey184 |
[25] |
DALE N M, FULLER H L. Effect of diet composition on feed intake and growth of chicks under heat stress: II. constant vs. cycling temperatures. Poultry Science, 1980, 59(7): 1434-1441. doi: 10.3382/ps.0591434.
doi: 10.3382/ps.0591434 |
[26] |
ALHENAKY A, ABDELQADER A, ABUAJAMIEH M, AL- FATAFTAH A R. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. Journal of Thermal Biology, 2017, 70: 9-14. doi: 10.1016/j.jtherbio.2017.10.015.
doi: 10.1016/j.jtherbio.2017.10.015 |
[27] |
SONG Z H, CHENG K, ZHANG L L, WANG T. Dietary supplementation of enzymatically treated Artemisia annua could alleviate the intestinal inflammatory response in heat-stressed broilers. Journal of Thermal Biology, 2017, 69: 184-190. doi: 10.1016/j.jtherbio.2017.07.015.
doi: 10.1016/j.jtherbio.2017.07.015 |
[28] |
UERLINGS J, SONG Z G, HU X Y, WANG S K, LIN H, BUYSE J, EVERAERT N. Heat exposure affects jejunal tight junction remodeling independently of adenosine monophosphate-activated protein kinase in 9-day-old broiler chicks. Poultry Science, 2018, 97(10): 3681-3690. doi: 10.3382/ps/pey229.
doi: 10.3382/ps/pey229 |
[29] |
CHOI J H, KIM G B, CHA C J. Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poultry Science, 2014, 93(8): 1942-1950. doi: 10.3382/ps.2014-03974.
doi: 10.3382/ps.2014-03974 |
[30] |
XIAO Y P, XIANG Y, ZHOU W D, CHEN J G, LI K F, YANG H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5): 1387-1393. doi: 10.3382/ps/pew372.
doi: 10.3382/ps/pew372 |
[31] |
HEENEY D D, GAREAU M G, MARCO M L. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Current Opinion in Biotechnology, 2018, 49: 140-147. doi: 10.1016/j.copbio.2017.08.004.
doi: 10.1016/j.copbio.2017.08.004 |
[32] |
WANG T W, TENG K L, LIU Y Y, SHI W X, ZHANG J, DONG E Q, ZHANG X, TAO Y, ZHONG J. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Frontiers in Microbiology, 2019, 10: 90. doi: 10.3389/fmicb.2019.00090.
doi: 10.3389/fmicb.2019.00090 |
[33] |
ZHANG W, WU Q, ZHU Y H, YANG G Y, YU J, WANG J F, JI H F. Probiotic Lactobacillus rhamnosus GG induces alterations in ileal microbiota with associated CD3 - CD19 - T-bet + IFNγ +/- cell subset homeostasis in pigs challenged with Salmonella enterica serovar 4, [5], 12: i:. Frontiers in Microbiology, 2019, 10: 977. doi: 10.3389/fmicb.2019.00977.
doi: 10.3389/fmicb.2019.00977 |
[34] |
SONOYAMA K, FUJIWARA R, TAKEMURA N, OGASAWARA T, WATANABE J, ITO H, MORITA T. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Applied and Environmental Microbiology, 2009, 75(20): 6451-6456. doi: 10.1128/AEM.00692-09.
doi: 10.1128/AEM.00692-09 |
[35] |
COSTELLO E K, GORDON J I, SECOR S M, KNIGHT R. Postprandial remodeling of the gut microbiota in Burmese pythons. The ISME Journal, 2010, 4(11): 1375-1385. doi: 10.1038/ismej.2010.71.
doi: 10.1038/ismej.2010.71 |
[36] |
SANDHU K V, SHERWIN E, SCHELLEKENS H, STANTON C, DINAN T G, CRYAN J F. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179: 223-244. doi: 10.1016/j.trsl.2016.10.002.
doi: 10.1016/j.trsl.2016.10.002 |
[37] |
GUEVARRA R B, LEE J H, LEE S H, SEOK M J, KIM D W, KANG B N, JOHNSON T J, ISAACSON R E, KIM H B. Piglet gut microbial shifts early in life: Causes and effects. Journal of Animal Science and Biotechnology, 2019, 10: 1. doi: 10.1186/s40104-018-0308-3.
doi: 10.1186/s40104-018-0308-3 |
[38] |
OSMAN A M, TANIOS N I. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comparative Biochemistry and Physiology Part A: Physiology, 1983, 75(4): 563-567. doi: 10.1016/0300-9629(83)90421-8.
doi: 10.1016/0300-9629(83)90421-8 |
[39] |
ROUTMAN K S, YOSHIDA L, FRIZZAS DE LIMA A C, MACARI M, PIZAURO J M Jr. Intestinal and pancreas enzyme activity of broilers exposed to thermal stress. Revista Brasileira De Ciência Avícola, 2003, 5(1): 23-27. doi: 10.1590/s1516-635x2003000100003.
doi: 10.1590/s1516-635x2003000100003 |
[40] |
PETROSUS E, SILVA E B, LAY D, EICHER S D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage1. Journal of Animal Science, 2018, 96(11): 4543-4551. doi: 10.1093/jas/sky312.
doi: 10.1093/jas/sky312 |
[41] |
AATSINKI A K, KESKITALO A, LAITINEN V, MUNUKKA E, UUSITUPA H M, LAHTI L, KORTESLUOMA S, MUSTONEN P, RODRIGUES A J, COIMBRA B, HUOVINEN P, KARLSSON H, KARLSSON L. Maternal prenatal psychological distress and hair cortisol levels associate with infant fecal microbiota composition at 2.5 months of age. Psychoneuroendocrinology, 2020, 119: 104754. doi: 10.1016/j.psyneuen.2020.104754.
doi: 10.1016/j.psyneuen.2020.104754 |
[42] |
AMINI-KHOEI H, HAGHANI-SAMANI E, BEIGI M, SOLTANI A, MOBINI G R, BALALI-DEHKORDI S, HAJ-MIRZAIAN A, RAFIEIAN-KOPAEI M, ALIZADEH A, HOJJATI M R, VALIDI M. On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress. International Immunopharmacology, 2019, 66: 242-250. doi: 10.1016/j.intimp.2018.11.037.
doi: 10.1016/j.intimp.2018.11.037 |
[1] | SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830. |
[2] | KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806. |
[3] | REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525. |
[4] | LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209. |
[5] | YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279. |
[6] | YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434. |
[7] | Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458. |
[8] | ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057. |
[9] | YUAN XiongKun,JIANG LiLi,TAO ShiYu,ZANG JianJun,WANG JunJun. Research Progresses on Sensitive Index System of Heat Stress in Sows [J]. Scientia Agricultura Sinica, 2020, 53(22): 4691-4699. |
[10] | Shuang XING,JingHai FENG. Effects of Lactobacillus Supplements on Growth Performance of Broilers: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(1): 183-190. |
[11] | YANG YuYan,WANG XueJie,ZHANG MinHong,FENG JingHai. The Upper Limit Temperature of Thermoneutral Zone Estimated by the Changes of Temperature and Respiration Rate of the Broilers [J]. Scientia Agricultura Sinica, 2019, 52(3): 550-557. |
[12] | HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799. |
[13] | HAN JiaLiang, LIU JianXin, LIU HongYun. Effect of Heat Stress on Lactation Performance in Dairy Cows [J]. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170. |
[14] | FAN XiaoRui, ZHANG Zhen, XI HuaMing, LIANG YaJun, HE JunPing. Effect of Heat Stress on the Expression of Cyt-C and Caspase-3 in Boar Testis [J]. Scientia Agricultura Sinica, 2017, 50(5): 924-931. |
[15] | YANG Huan, SHEN Xin, LU DaLei, LU WeiPing. Effects of Heat Stress Durations at Grain Formation Stage on Grain Yield and Starch Quality of Waxy Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2071-2082. |
|