Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (23): 4811-4817.doi: 10.3864/j.issn.0578-1752.2015.23.022

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Evolution Characteristics and Influence Factors of Acidification in Paddy Soil of Southern China

ZHOU Xiao-yang1,2, ZHOU Shi-Wei1, XU Ming-gang1, Colinet Gilles2   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/ National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081, China
    2Gembloux Agro Bio Tech, University of Liege, Passage des deportes 2, 5030 Gembloux, Belgium
  • Received:2015-09-16 Online:2015-12-01 Published:2015-12-01

Abstract: 【Objective】The objective of this research was to illustrate evolution characteristics of acidification in paddy soil of southern China and to understand the main reasons of soil acidification, which will help farmers to reduce and control soil acidification rate in these areas by rational fertilization. 【Method】We collected monitoring data from 20 sites located in Jiangsu, Hunan, Guangdong, Guangxi, Sichuan and Yunnan Province in southern China to evaluate soil acidification characteristics of paddy soils and to analyze cause for soil acidification.【Result】Significant soil acidification was observed in paddy soils from 1988 to 2013 with the acidification of decreasing 0.59 pH of soils and average rate of 0.023 pH unit/a. There was phased characteristic of paddy soil acidification. Paddy soils average pH declined significantly during first 14 years with an average pH rate of 0.051pH unit/a. And there was no significant soil acidification in last 10 years. Further, increasing chemical nitrogen (N) rate leaded to paddy soil serious acidification. There was a negative correlation between the chemical fertilizer rate, chemical N rate and soil pH value. Soil pH of paddy soils declined 0.65 unit with chemical N rate increasing every 100 kg·hm-2. Decreasing organic fertilizer rate accelerated paddy soil acidification significantly. Soil pH of paddy soils decreasing 0.51 was observed with each reducing 100 kg·hm-2 of organic fertilizer application. Soil total N and available N contents have negative correlations with soil pH value, which soil pH decline about 0.1 with more 100 mg·kg-1 of soil total N and available N.【Conclusion】In southern China, paddy soils have significant acidification in last 25 years, and with phased characteristics of soil acidification. Significant acidification was in the earlier 10 years and soil pH is stable in the latest 10 years. Reducing the application rate of chemical nitrogen fertilizers and increasing organic fertilizers, is an effective practices for preventing acidification in paddy soils of southern China.

Key words: paddy soil, soil acidification, long-term fertilization, nitrogen fertilizer, soil pH

[1]    Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Chritie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[2]    郭治兴, 王静, 柴敏, 陈泽鹏, 詹振寿, 郑武平, 魏秀国. 近30年来广东省土壤pH值的时空变化. 应用生态学报, 2011, 22: 425-430.
Guo Z X, Wang J, Chai M, Chen Z P, Zhan Z S, Zheng W P, Wei X G. Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years. Chinese Journal of Applied Ecology, 2011, 22: 425-430. (in Chinese)
[3]    曾勇军, 周庆红, 吕伟生, 谭雪明, 潘晓华, 石庆华. 土壤酸化对双季早、晚稻产量的影响. 作物学报, 2014, 40(5): 899-907.
Zeng Y J, Zhou Q H, Lü W S, Tan X M, Pan X H, Shi Q H. Effects of soil acidification on the yield of double season rice. Acta Agronomica Sinica, 2014, 40(5): 899-907. (in Chinese)
[4]    Cai Z J, Wang B R, Xu M G, Zhang H M, He X H, Zhang L, Gao S D. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments, 2015, 15(2): 260-270.
[5]    曾招兵, 曾思坚, 刘一锋, 汤建东, 张满红. 1984年以来广东水稻土pH变化趋势及影响因素. 土壤, 2014, 46(4): 732-736.
Zeng Z B, Zeng S J, Liu Y F, Tang J D, Zhang M H. Change tendency of paddy soil pH in Guangdong Province since 1984 and influential factors. Soils, 2014, 46(4): 732-736. (in Chinese)
[6]    Zhou J, Xia F, Liu X M, He Y, Xu J M, Brookes P C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. Journal of Soils and Sediments, 2014, 14(2): 415-422.
[7]    Tarkalson D D, Payero J O, Hergert G W, Cassman K G. Acidification of soil in a dry land winter wheat-sorghum/corn-fallow rotation in the semiarid US Great Plains. Plant and Soil, 2006, 283(1/2): 367-379.
[8]    Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 1-10.
[9]    Schroder J L, Zhang H L, Girma K, Raun W R, Penn C J. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal, 2011, 75(3): 957-964.
[10]   Lungu O I M, Dynoodt R F P. Acidification from long-term use of urea and its effect on selected soil properties. African Journal of Food, Agriculture, Nutrition and Development, 2008, 8(1): 63-76.
[11]   孟红旗. 长期施肥农田的土壤酸化特征与机制研究[D]. 杨凌: 西北农林科技大学, 2013.
Meng H Q. Characteristics and mechanisms for soil acidification under long-term fertilization in Chinese croplands [D]. Yangling: Northwest Agriculture and Forestry University, 2013. (in Chinese)
[12]   Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology & Biochemistry, 2008, 40: 1856-1861.
[13]   Hicks W K, Kuylenstierna J C I, Owen A, Dentener F, Seip H M, Rodhe H. Soil sensitivity to acidification in Asia: Status and prospects. Ambio, 2008, 37(4): 295-303.
[14]   Simansky V, Polláková N. Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. Archives of Agronomy & Soil Science, 2013, 60(8): 1145-1154.
[15]   Curtin D, Campbell C A, Jalil A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology & Biochemistry, 1998, 30(1): 57-64.
[16]   张永春, 汪吉东, 沈明星, 沈其荣, 许仙菊, 宁运旺. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010(3): 465-472.
Zhang Y C, Wang J D, Shen M X, Shen Q R, Xu X J, Ning Y      W. Effects of long-term fertilization on soil acidification in Taihu  Lake region, China. Acta Pedologica Sinica, 2010(3): 465-472. (in Chinese)
[17]   汪吉东, 张辉, 张永春, 许仙菊, 宁运旺, 马洪波, 陈杰. 连续施用不同比例鸡粪氮对水稻土有机质积累及土壤酸化的影响. 植物营养与肥料学报, 2014,20(5): 1178-1185.
Wang J D, Zhang H, Zhang Y C, Xu X J, Ning Y W, Ma H B, Chen J. Effect of different ratios of chicken manure N on organic matter accumulation and acidification of paddy soils. Plant Nutrition and Fertilizer Science, 2014, 20(5): 1178-1185. (in Chinese)
[18]   鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
Bao S D. Soil Agrichemistry. Beijing: China Agriculture Science and Technique Press, 2000. (in Chinese)
[19]   Curtis C J, Botev I, Camarero L, Catalan J, Cogalniceanu D, Hughes M, Kernan M, Kopacek J, Korhola A, Psenner R, Rogora M, Stuchlik E, Veronesi M, Wright R. Acidification in European mountain lake districts: A regional assessment of critical load exceedance. Aquatic Sciences, 2005, 67(3): 237-251.
[20]   Lucas R W, Klaminder J, Futter M N, Bishop K H, Egnell G, Laudon H, Hogberg P. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology & Management, 2011, 262(2): 95-104.
[21]   Berthrong S T, Jobbágy E G, Jackson R B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 2009, 19(8): 2228-2241.
[22]   孟红旗, 刘景, 徐明岗, 吕家珑, 周宝库, 彭畅, 石孝均, 黄庆海, 王伯仁. 长期施肥下我国典型农田耕层土壤的pH演变. 土壤学报, 2013, 50(6): 1109-1116.
Meng H Q, Liu J, Xu M G, Lü J L, Zhou B K, Peng C, Shi X J, Huang Q H, Wang B R. Evolution of pH in topsoils of typical Chinese cropland under long-term fertilization. Acta Pedologica Sinica, 2013, 50(6): 1109-1116. (in Chinese)
[23]   Bowman W D, Cleveland C C, Halada L, Hresko J, Baron J. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1(11): 767-770.
[24]   Vieira F C B, Bayer C, Mielniczuk J, Zanatta J, Bissani C A. Long-term acidification of a Brazilian Acrisol as affected by no till cropping systems and nitrogen fertilizer. Soil Research, 2008, 46(1): 17-26.
[25]   Chadwick O A, Chorover J. The chemistry of pedogenic threshold. Geoderma, 2001, 100: 321-353.
[26]   Lu X K, Mao Q G, Gilliam F S, Luo Y Q, Mo J M. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 2014, 20(12): 3790-3801.
[27]   Neville M G, Philip R, Iurii S. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204.
[28]   Wang N, Li J Y, Xu R K. Use of agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use & Management, 2009, 25(2): 128-132.
[29]   张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013, 46(15): 3161-3171. (in Chinese)
[30]   Fujii K, Hartono A, Funakawa S, Uemura M, Sukartiningsih, Kosaki T. Acidification of tropical forest soils derived from serpentine and sedimentary rocks in East Kalimantan, Indonesia. Geoderma, 2011, 160: 311-323.
[31]   Posch M, Reinds G J. A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling & Software, 2009, 24(3): 329-340.
[32]   Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui, Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
[33]   Currie W S, Aber J D, Scoll C T. Leaching of nutrient cations from the forest floor: Effects of nitrogen saturation in two long-term manipulations. Canadian Journal of Forest Research, 1999, 29(5): 609-620.
[34]   Gundersen P, Schmidt I K, Raulund-Rasmussen K. Leaching of nitrate from temperate forests-effects of air pollution and forest management. Environmental Reviews, 2006, 14(1): 1-57.
[35]   Tong D L, Xu R K. Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from Southern China. Journal of Environmental Sciences, 2012, 24(4): 682-689.
[36]   孟红旗, 吕家珑, 徐明岗, 蔡泽江, 王伯仁. 有机肥的碱度及其减缓土壤酸化的机制. 植物营养与肥料学报, 2012, 18(5): 1153-1160.
Meng H Q, Lü J L, Xu M G, Cai Z J, Wang B R. Alkalinity of organic manure and its mechanism for mitigating soil acidification. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1153-1160. (in Chinese)
[37]   柳开楼, 李大明, 黄庆海, 余喜初, 叶会财, 徐小林, 胡慧文, 王赛莲. 红壤稻田长期施用猪粪的生态效益及承载力评估. 中国农业科学, 2014, 47(2): 303-313.
Liu K L, Li D M, Huang Q H, Yu X C, Ye H C, Xu X L, Hu H W, Wang S L. Ecological benefits and environmental carrying capacities of red paddy field subjected to long-term pig manure amendments. Scientia Agricultura Sinica, 2014, 47(2): 303-313. (in Chinese)
[38]   Wang F M, Li J, Wang X L, Zhang W, Zou B, Neher D A, Li Z A. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 2014, DOI: 10.1038/srep05615.
[1] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[2] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[3] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[4] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[5] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[6] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[7] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[8] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[9] ZHOU YongJie,XIE JunHong,LI LingLing,WANG LinLin,LUO ZhuZhu,WANG JinBin. Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System [J]. Scientia Agricultura Sinica, 2021, 54(23): 5054-5067.
[10] REN JiaXin,LIU Jing,CHEN XuanJing,ZHANG YueQiang,ZHANG Yong,WANG Jie,SHI XiaoJun. Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations [J]. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610.
[11] LI Ming,LI YingChun,NIU XiaoGuang,MA Fen,WEI Na,HAO XingYu,DONG LiBing,GUO LiPing. Effects of Elevated Atmospheric CO2 Concentration and Nitrogen Fertilizer on the Yield of Summer Maize and Carbon and Nitrogen Metabolism After Flowering [J]. Scientia Agricultura Sinica, 2021, 54(17): 3647-3665.
[12] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[13] LIU PengZhao,ZHOU Dong,GUO XingYu,YU Qi,ZHANG YuanHong,LI HaoYu,ZHANG Qi,WANG XuMin,WANG XiaoLi,WANG Rui,LI Jun. Response of Water Use and Yield of Dryland Winter Wheat to Nitrogen Application Under Different Rainfall Patterns [J]. Scientia Agricultura Sinica, 2021, 54(14): 3065-3076.
[14] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[15] LI HanTing,CHAI Qiang,WANG QiMing,HU FaLong,YU AiZhong,ZHAO Cai,YIN Wen,FAN ZhiLong,FAN Hong. Water Use Characteristics of Maize-Green Manure Intercropping Under Different Nitrogen Application Levels in the Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(12): 2608-2618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!