Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (21): 4601-4610.doi: 10.3864/j.issn.0578-1752.2021.21.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Variation of Available Phosphorus in Purple Soil and Its Effects on Crop Yield of Rice-Wheat Rotation Under Long-Term Fertilizations

REN JiaXin1(),LIU Jing1,CHEN XuanJing1,ZHANG YueQiang1,2,ZHANG Yong1,2,WANG Jie1,2,*(),SHI XiaoJun1,2   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400716
    2National Monitoring Station of Soil Fertility and Fertilizer Efficiency on Purple Soils, Chongqing 400716
  • Received:2020-11-23 Accepted:2021-01-22 Online:2021-11-01 Published:2021-11-09
  • Contact: Jie WANG E-mail:3465044028@qq.com;mutouyu@swu.edu.cn

Abstract:

【Objective】Based on the analyses of soil Olsen-P variation in the purple soil and its effects on crop yield under long-term different fertilizations in the rice-wheat rotation, this paper provided a theoretical basis for efficient and rational P management in purple soil. 【Method】This study were conducted based on the 27-year rice-wheat rotation trial platform in the Purple Soil Fertility Monitoring Station of the national soil fertility monitoring network. The soil Olsen-P content and crop yields of 10 different fertilization treatments were measured and compared, including CK treatment (crops growing without fertilization), N, NP, NK, PK, NPK (treatments with different chemical nitrogen (N), phosphorus (P), potassium (K) fertilizations), and M, NPKS, NPKM, 1.5NPK+M (chemical fertilizer combined with organic manure (M) and straw return (S) treatments) from 1991 to 2018. Then, the plant P uptake per 100 kg grains yield and the recovery rate of P by different fertilizations were calculated and compared, respectively. The responses between soil Olsen-P increment and cumulative P depletion were explored. In addition, the response curve of crop yield to soil Olsen-P content in the purple soil was figured by different modelling methods. The agronomic critical value of Olsen-P content in purple soil was finally calculated. 【Result】Long-term application of P fertilizer could significantly increase soil Olsen-P content. The average annual increment of soil Olsen-P content was 0.80-2.32 mg·kg-1 in P application treatments, whereas the soil Olsen-P content of CK, N, NK and M treatments decreased year by year to a steady state. The cumulative P surpluses by the 27-year P application treatments were 244.8-698.2 kg P·hm-2, among which the cumulative P surplus of the 1.5NPK+M treatment was the highest. A significant linear correlation between cumulative soil P surplus and soil Olsen-P increment could be found in P application treatments. In detail, soil Olsen-P increased by 4.27-6.5 mg·kg-1with 100 kg·P·hm-2 cumulative surplus in P application treatments. Fertilization could significantly increase crop yields and P uptake in the long-term rice-wheat rotation system. The plant P uptake per 100 kg rice yield was 0.17-0.41 kg, whereas the plant P uptake per 100 kg wheat yield was 0.25-0.57 kg. The utilization rates of P under all treatments were 10.3%-39.7%. Four models (linear-platform model, linear-linear model, BoxLucas model, and Michelice model) were good for fitting the response of crop yield to Olsen-P content in purple soil. The agronomic critical value of Olsen-P content in purple soil of rice and wheat calculated by linear-linear model (with the highest R 2) were 13.28 mg·kg-1 and 9.93 mg·kg-1, respectively. 【Conclusion】Appropriate application of P fertilizer could significantly improve the P uptake of crop in rice-wheat rotation system on purple soil, crop yields and soil available P content. The linear-linear model was recommended to calculate the critical value of Olsen-P content in purple soil under rice-wheat rotation system. Application rates of P fertilizer should be adjusted timely according to the difference between actual soil Olsen-P content and agronomic critical value of Olsen-P content in productivity.

Key words: purple soil, rice-wheat rotation, long-term fertilization, Olsen-P content, total P balance, agronomic critical value of Olsen-P

Table 1

Plant P uptake per 100 kg grains yield in purple soil under long-term fertilizations"

处理
Treatment
产量 Yield (kg·hm-2) 100 kg籽粒需磷量 P uptake per 100 kg grains yield (kg)
水稻Rice 小麦Wheat 水稻Rice 小麦Wheat
CK 6115.8±1271.1e 3099.9±790.9c 0.26±0.03b 0.33±0.06b
N 9458.1±1804.4c 3727.0±1382.8c 0.17±0.07c 0.25±0.02c
NP 11060.0±1886.9b 5667.5±1378.2b 0.38±0.04a 0.46±0.05a
NK 11151.5±1916.0b 3687.4±1632.2c 0.27±0.04b 0.25±0.05b
PK 7939.6±1120.4d 3698.0±1061.4c 0.38±0.03a 0.57±0.02a
NPK 12444.9±1793.3a 7015.6±1265.8a 0.36±0.03a 0.48±0.03a
NPKM 12441.7±2033.1a 6958.7±1369.1a 0.37±0.03a 0.50±0.06a
1.5NPKM 12760.5±1937.4a 7624.9±1590.5a 0.41±0.04a 0.52±0.03a
NPKS 13148.4±1910.1a 6883.9±1619.9a 0.39±0.02a 0.48±0.03a
M 8174.1±2174.2d 3161.9±913.2c 0.32±0.03b 0.39±0.05b

Fig. 1

Change of Olsen-P in purple soil under long-term different fertilizations"

Fig. 2

Correlations relationship between soil Olsen-P change and P balance in purple soil under long-term fertilization treatments"

Table 2

P utilization efficiency in rice-wheat rotation system under long-term fertilization treatments"

处理
Treatment
水稻季
Rice
小麦季
Wheat
全年
Annual
CK
N
NP 24.4±7.5b 12.3±2.4b 36.7±6.9b
NK
PK 14.2±2.0c 7.4±2.0c 21.5±2.7c
NPK 27.0±7.4a 17.4±3.1a 44.4±7.2a
NPKM 27.7±4.9a 17.1±2.7a 44.8±5.4a
1.5NPKM 31.1±7.4a 19.9±2.7a 50.9±7.3a
NPKS 32.9±6.5a 16.8±2.7a 49.6±5.2a
M

Table 3

The critical P value of soil Olsen-P in purple soil under long-term fertilization treatments"

模型
Model
小麦 Wheat 水稻 Rice
农学阈值
Agronomy threshold (mg·kg-1)
相对产量
Relative yield (%)
R2 农学阈值
Agronomy threshold (mg·kg-1)
相对产量
Relative yield (%)
R2
线性-平台模型 LP 10.10 88.3 0.643** 14.34 92.4 0.427**
双直线模型 LL 9.93 87.5 0.654** 13.28 92.9 0.548**
BoxLucas模型 BL 9.17 79.5 0.595** 3.96 80.0 0.229**
米切里西模型 EXP 12.50 80.8 0.621** 10.01 84.0 0.414**
均值 Mean 10.44 84.1 10.73 87.4
[1] 陆景陵. 植物营养学. 北京: 中国农业大学出版社, 2005.
LU J L. Plant Nutrition. Beijing: China Agriculture University Press, 2005. (in Chinese)
[2] KOPITTKE P M, DALAL R C, WANG P, MENZIES N W. Effects of long-term cultivation on phosphorus (P) in five low-input, subtropical Australian soils. Agriculture Ecosystems & Environment, 2018, 252:191-199.
doi: 10.1016/j.agee.2017.10.018
[3] SURIYAGODA L D B, RYAN M H, RENTON M, LAMBERS M. Plant responses to limited moisture and phosphorus availability: A meta-analysis. Advances in Agronomy, 2014, 124:143-200.
[4] LI H G, HUANG G, MENG Q, MA L N, YUANL X, WANG F Y, ZHANG W, CUI Z, SHEN J Y, CHEN X G, JIANG R F, ZHANG F S. Integrated soil and plant phosphorus management for crop and environment in China: A review. Plant and Soil, 2011, 349:157-167.
doi: 10.1007/s11104-011-0909-5
[5] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372:27-37.
doi: 10.1007/s11104-013-1696-y
[6] YANG Y J, ZHANG H P, QIAN X Q, DUAN J N, WANG G L. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China. Science of the Total Environment, 2017, 609:102-108.
doi: 10.1016/j.scitotenv.2017.07.149
[7] 王斌, 刘骅, 李耀辉, 马兴旺, 王西和, 马义兵. 长期施肥条件下灰漠土磷的吸附与解吸特征. 土壤学报, 2013, 50(4):727-733.
WANG B, LIU H, LI Y H, MA X W, WANG X H, MA Y B. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization. Acta Pedologica Sinica, 2013, 50(4):727-733. (in Chinese)
[8] 卜容燕, 任涛, 鲁剑巍, 李小坤, 丛日环, 李云春, 汪洋, 鲁君明. 水稻-油菜轮作条件下磷肥效应研究. 中国农业科学, 2014, 7(6):1227-1234.
BU R Y, REN T, LU J W, LI X K, CONG R H, LI Y C, WANG Y, LU J M. Analysis of phosphorus fertilizer efficiency under rice-rapeseed rotation system. Scientia Agricultura Sinica, 2014, 7(6):1227-1234. (in Chinese)
[9] 展晓莹, 任意, 张淑香, 康日峰. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48(23):4728-4737.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23):4728-4737. (in Chinese)
[10] 李冬初, 王伯仁, 黄晶, 张扬珠, 徐明岗, 张淑香, 张会民. 长期不同施肥红壤磷素变化及其对产量的影响. 中国农业科学, 2019, 52(21):3830-3841.
LI D C, WANG B R, HUANG J, ZHANG Y Z, XU M G, ZHANG S X, ZHANG H M. Change of phosphorus in red soil and its effect to grain yield under long-term different fertilizations. Scientia Agricultura Sinica, 2019, 52(21):3830-3841. (in Chinese)
[11] DODD J R, MALLARINO A P. Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Science Society of America Journal, 2005, 69(4):1118-1128.
doi: 10.2136/sssaj2004.0279
[12] TANG X, SHI X, MA Y, HAO X. Phosphorus efficiency in a long-term wheat-rice cropping system in China. Journal of Agricultural Science, 2011, 149(3):297-304.
[13] 刘方, 黄昌勇, 何腾兵, 钱小刚, 刘元生, 罗海波. 长期施肥下黄壤旱地磷对水环境的影响及其风险评价. 土壤学报, 2003, 40(6):838-844.
LIU F, HUANG C Y, HE T B, QIAN X G, LIU Y S, LUO H B. The environmental impact of phosphorus on water in the upland fields of yellow soil areas under long-term fertilization and its risks evaluation. Acta Pedologica Sinica, 2003, 40(6):838-844. (in Chinese)
[14] DJODJIC F, BÖRLING K, BERGSTRÖM L. Phosphorus leaching in relation to soil type and soil phosphorus content. Journal of Environmental Quality, 2004, 33(2):678-684.
doi: 10.2134/jeq2004.6780
[15] 曹宁, 陈新平, 张福锁, 曲东. 从土壤肥力变化预测中国未来磷肥需求. 土壤学报, 2007, 44(3):536-543.
CAO N, CHEN X P, ZHANG F S, QU D. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility. Acta Pedologica Sinica, 2007, 44(3):536-543. (in Chinese)
[16] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
[17] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Soil Agrochemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[18] 刘京. 长期施肥下紫色土磷素累积特征及其环境风险[D]. 重庆: 西南大学, 2015.
LIU J. Characteristics of phosphorus accumulation in purple soil under long-term fertilization and its environmental risks[D]. Chongqing: Southwest University, 2015. (in Chinese)
[19] 吴春艳, 刘晓霞, 陈义, 李艳, 唐旭, 陆若辉. 不同施肥管理下水旱轮作水稻土磷含量的演变. 浙江农业学报, 2019, 31(7):1128-1137.
WU C Y, LIU X X, CHEN Y, LI Y, TANG X, LU R H. Variation of phosphorus content in paddy soil under different fertilization management. Acta Agriculturae Zhejiangensis, 2019, 31(7):1128-1137. (in Chinese)
[20] 魏猛, 张爱君, 李洪民, 唐忠厚, 陈晓光, 诸葛玉平. 长期施肥条件下黄潮土有效磷对磷盈亏的响应. 华北农学报, 2015, 30(6):226-232.
WEI M, ZHANG A J, LI H M, TANG Z H, CHEN X G, ZHUGE Y P. The response of available phosphorus in yellow fluvo-aquic soil to phosphorus surplus and loss under long-term fertilization conditions. Acta Agriculturae Boreali-Sinica, 2015, 30(6):226-232. (in Chinese)
[21] 袁天佑, 王俊忠, 冀建华, 牛俊义, 慕兰. 长期施肥条件下潮土Olsen-P的演变及其对磷盈亏的响应. 核农学报, 2017, 31(1):125-134.
YUAN T Y, WANG J Z, JI J H, NIU J Y, MU L. Changes in soil available phosphorus and its response to phosphorus balance under long-term fertilization in fluvo-aquic soil. Journal of Nuclear Agricultural Sciences, 2017, 31(1):125-134. (in Chinese)
[22] TANG X, LI J M, MA Y B, HAO X Y, LI X Y. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions. Field Crops Research, 2008, 108(3):231-237.
doi: 10.1016/j.fcr.2008.05.007
[23] YANG X Y, SUN B H, ZHANG S L. Trends of yield and soil fertility in a long-term wheat-maize system. Journal of Integrative Agriculture, 2014, 13(2):402-414.
doi: 10.1016/S2095-3119(13)60425-6
[24] SHEN P, XU M G, ZHANG H M, YANG X Y, HUANG S M, ZHANG S X, HE X H. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena, 2014, 118:20-27.
doi: 10.1016/j.catena.2014.01.020
[25] 李忠芳, 徐明岗, 张会民, 张文菊, 高静. 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009, 42(7):2407-2414.
LI Z F, XU M G, ZHANG H M, ZHANG W J, GAO J. Changes in yields of major grain crops in China under long-term fertilization. Scientia Agricultura Sinica, 2009, 42(7):2407-2414. (in Chinese)
[26] 黄琦. 基于“3414”田间试验的吉林省水稻施肥效果分析[D]. 吉林: 吉林农业大学, 2016.
HUANG Q. Fertilization effect analysis of Rice in Jilin Province based on field experiment of “3414”[D]. Jilin: Jilin Agricultural University, 2016. (in Chinese)
[27] 车升国, 袁亮, 李燕婷, 林治安, 李燕青, 赵秉强, 沈兵. 我国主要麦区小麦产量形成对磷素的需求. 植物营养与肥料学报, 2016, 22(4):869-876.
CHE S G, YUAN L, LI Y T, LIN Z A, LI Y Q, ZHAO B Q, SHEN B. Phosphorous requirement for yield formation of wheat in main wheat production regions of China. Journal of Plant Nutrition and Fertilizers, 2016, 22(4):869-876. (in Chinese)
[28] ZHANG B B. LIU W Z, CHANG S X, ANYIO A O. Phosphorus fertilization and fungal inoculations affected the physiology, phosphorus uptake and growth of spring wheat under rainfed conditions on the Canadian prairies. Journal of Agronomy & Crop Science, 2013, 199(2):85-93.
[29] 赵双进, 李晋生. 施肥对冬小麦夏谷氮磷吸收量的影响. 土壤肥料, 1992(3):27-29.
ZHAO S J, LI J S. Effect of fertilization on nitrogen and phosphorus uptake in winter wheat and summer valley. Soil and Fertilizer Sciences in China, 1992(3):27-29. (in Chinese)
[30] WANG X R, SHEN J B, LIAO H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops. Plant Science, 2010, 179(4):302-306.
doi: 10.1016/j.plantsci.2010.06.007
[31] 孙明, 孙翠平, 李彦, 仲子文, 井永苹, 罗加法, 薄录吉, 张英鹏. 长期定位施肥对山东潮土磷肥回收率演变及不同作物磷素吸收的影响. 农业科学, 2017, 7(6):433-442.
SUN M, SUN C P, LI Y, ZHONG Z W, JING Y P, LUO J F, BO L J, ZHANG Y P. Effects of long-term fertilization on phosphorus recovery and phosphorus uptake by different crops in fluvo-aquic soil of Shandong Province. Agricultural Sciences, 2017, 7(6):433-442. (in Chinese)
[32] 高静, 张淑香, 徐明岗, 黄绍敏, 杨学云. 长期施肥下三类典型农田土壤小麦磷肥利用效率的差异. 应用生态学报, 2009, 20(9):2142-2148.
GAO J, ZHANG S X, XU M G, HUANG S M, YANG X Y. Difference of phosphorus use efficiency of wheat in three typical farmland soils under long-term fertilization. Chinese Journal of Applied Ecology, 2009, 20(9):2142-2148. (in Chinese)
[33] 孙翠平, 张英鹏, 罗加法, 仲子文, 孙明, 李彦, 刘兆辉, 井永苹, 薄录吉. 长期施肥对山东潮土磷盈亏及农学阈值的影响. 华北农学报, 2019, 34(5):185-191.
SUN C P, ZHANG Y P, LUO J F, ZHONG Z W, SUN M, LI Y, LIU Z H, JING Y P, BO L J. The effect of long-term fertilization on the phosphorus gain and loss and agronomic threshold of the fluvo-aquic soil in Shandong. Acta Agriculturae Boreali-Sinica, 2019, 34(5):185-191. (in Chinese)
[34] 黄晶. 基于几个长期定位试验的长江上、中游水稻土磷素肥力与磷肥肥效的演变规律[D]. 长沙: 湖南农业大学, 2017.
HUANG J. Evolution of soil phosphorus fertility and phosphate fertilizer efficiency of paddy soils in the upper and middle reaches of the Yangtze River based on several stationary experiments[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[35] KHAN A, LU G Y, AYAZ M, ZHANG H T, WANG R J, LV F L, YANG X Y, SUN B H, ZHANG S L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture Ecosystems & Environment, 2018, 256:1-11.
doi: 10.1016/j.agee.2018.01.006
[1] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[2] ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
[3] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[4] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[5] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[6] Na JIANG,DongMei SHI,GuangYi JIANG,Ge SONG,ChengJing SI,Qing YE. Effects of Soil Erosion on Physical and Mechanical Properties of Cultivated Layer of Purple Soil Slope Farmland [J]. Scientia Agricultura Sinica, 2020, 53(9): 1845-1859.
[7] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
[8] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[9] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[10] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[11] YaLin LI,XuBo ZHANG,FengLing REN,Nan SUN,Meng XU,MingGang XU. A Meta-Analysis of Long-Term Fertilization Impact on Soil Dissolved Organic Carbon and Nitrogen Across Chinese Cropland [J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233.
[12] WANG Le,CHEN YanHua,ZHANG ShuXiang,MA ChangBao,SUN Nan,LI ChunHua. Evolution of Fluvo-Aquic Soil Productivity Under Long-Term Fertilization and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2020, 53(11): 2232-2240.
[13] LI DongChu,WANG BoRen,HUANG Jing,ZHANG YangZhu,XU MingGang,ZHANG ShuXiang,ZHANG HuiMin. Change of Phosphorus in Red Soil and Its Effect to Grain Yield Under Long-Term Different Fertilizations [J]. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841.
[14] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
[15] SHEN FengMin,JIANG GuiYing,ZHANG YuJun,LIU Fang,LIU ShiLiang,LIU KaiLou. Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems [J]. Scientia Agricultura Sinica, 2019, 52(14): 2468-2483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!