Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (7): 1410-1423.doi: 10.3864/j.issn.0578-1752.2021.07.008

• EFFICIENT UTILIZATION OF FERTILIZER AND WATER • Previous Articles     Next Articles

Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice

LÜ TengFei1,2,SHEN Jie1,MA Peng1,DAI Zou2,YANG ZhiYuan1,XU Hui1,ZHENG ChuanGang2,MA Jun1()   

  1. 1Rice Research Institute, Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130
    2College of Agricultural Science and Technology, Xichang University, Xichang 615000, Sichuan
  • Received:2020-07-06 Accepted:2020-11-23 Online:2021-04-01 Published:2021-04-22
  • Contact: Jun MA E-mail:majunp2002@163.com

Abstract:

【Objective】The aim of this study was to investigate using the big panicle advantage of indica hybrid rice to obtain a high-yield under the potted machine-transplanted and combined application of slow release nitrogen (N) fertilizer and urea, and to explore N utilization characteristics of the potted-seedling machine-transplanted hybrid indica rice in the Southwest rice region, so as to provide the theoretical and practical basis for the technology of saving-fertilizer and high-yield of machine-transplanted hybrid rice seedling in China. 【Method】 A 2-year split-plot experiment (2016-2017) was conducted in Meishan, Sichuan province, China. In the experiment, two machine-transplanted methods was set, including potted-seedling (M1) and blanket-seedling (M2), and four N treatments were set, including 150 kg·hm-2 slow release N fertilizer (SRNF) as a base (N1), 105 kg·hm-2SRNF + 45 kg·hm-2 urea as a base (N2, SBUB), 105 kg·hm-2 SRNF as a base + 45 kg·hm-2 urea at the panicle initiation stage (N3, SBUP), and another treatment without N fertilizer as a control (N0). F-you 498 was the experimental variety, and the blanket-seedling machine-transplanted method and 100% slow-release N fertilizer as base were the reference. The N utilization characteristics of hybrid indica rice under the potted-seedling machine-transplanted and slow and rapid N fertilizer combined application were studied.【Result】Compared with the blanket-seedling rice, the potted-seedling significantly accelerated the N absorption rate by 0.49-1.33 kg·hm-2·d-1 from elongation stage to heading stage; The potted-seedling improved N transportation and N transportation efficiency of stems and leaves, and the contribution rate of N transportation from heading to maturity; The potted-seedling increased the N accumulation at heading and maturity by 12.63% and 5.20%, respectively; The potted-seedling increased N use efficiency for biomass production and grain yield, and N harvest index by 8.19-11.39, 0.66-5.72 and 5.41-6.42 percentage points, respectively; The potted-seedling improved N agronomic efficiency, N physiological efficiency, and partial factor productivity by 12.62%, 11.94% and 8.69%, respectively; The potted-seedling improved the effective panicles and spikelets per panicle, and improved the yield on 1 042.4 kg·hm-2 and 722.3 kg·hm-2, and increased by 10.3% and 7.2%, in 2016 and 2017, respectively. Under the potted-seedling, compared with 100% SRNF as base, SBUB decreased the N accumulation at heading stage and maturity stage, accelerated the N absorption rate and N accumulation from sowing stage to elongation stage, but decreased them from elongation to heading; N recovery efficiency, N physiological efficiency, the spikelets per panicle and spikelets per unit area under SBUB were significantly decreased, then the mean yield of 2 years decreased by 3.66%. Conversely, compared with 100% SRNF as base, SBUP increased the N accumulation at heading and maturity by 2.34% and 1.80%, respectively; SBUP improved the N absorption rate by 0.60 kg·hm-2·d-1 and N accumulation by 18.01 kg·hm-2 from elongation to heading; N recovery efficiency under SBUP were improved by 2.84 percentage points, and N agronomic efficiency, N physiological efficiency, and partial factor productivity by 12.54%, 7.91% and 52.55%, respectively; SBUP improved the spikelets per panicle and spikelets per unit area, then the yield improved by 4.61%.【Conclusion】Compared with the blanket-seedling, the potted-seedling had obvious advantages on N utilization efficiency, and SBUP could further enhance its N absorption and transfer capacity, then improved indica hybrid rice yield.

Key words: hybrid indica rice, potted-seedling machine-transplanted, slow and rapid nitrogen fertilizer combined application, nitrogen utilization

Fig. 1

Weather data during crop growing period"

Table 1

Soil properties of the experimental field"

年份
Year
pH有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
全钾
Total K
(g·kg-1)
速效氮
Available N
(mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
20166.9836.932.300.983.36124.1622.89106.97
20176.7027.872.081.033.08100.3631.9396.81

Table 2

Main growth stages in different machine-transplanted method (M-D)"

年份
Year
育秧方式
Seedling-raising method
播种期
Seeding time
移栽期
Transplanting time
拔节期
Elongation stage
抽穗期
Heading stage
成熟期
Maturity stage
2016钵苗 Potted03-2004-1706-0607-0408-22
毯苗 Blanket06-0707-0808-24
2017钵苗 Potted03-2504-2306-0207-0808-18
毯苗 Blanket06-0407-1008-20

Table 3

Effect of different machine-transplanted methods and N treatments on N accumulation (kg·hm-2)"

年份 Year处理 Treatment拔节期 Elongation stage抽穗期 Heading stage成熟期 Maturity stage
2016M1N027.20±0.53d93.07±1.33d138.24±1.25d
M1N187.08±2.15b220.60±0.81b234.28±1.62b
M1N293.50±1.37a188.59±0.78c215.34±0.83c
M1N370.60±2.14c229.21±3.46a240.34±0.49a
M2N040.71±0.64d79.77±1.83d130.67±1.49d
M2N184.97±0.86b191.60±3.37b220.27±1.42b
M2N290.35±0.71a161.51±1.05c209.40±2.16c
M2N376.95±0.77c221.13±5.70a235.36±4.20a
M20.50*134.29**225.03**
N787.38**346.68**908.66**
M×N17.72**9.42**1.71ns
2017M1N027.30±0.11d87.08±2.29c144.60±3.16c
M1N192.64±1.55b216.92±1.92a246.55±1.97a
M1N2102.02±2.36a174.79±4.52b216.91±1.99b
M1N383.41±2.45c218.62±4.53a249.01±3.08a
M2N031.39±1.00c71.90±1.06d132.85±2.29d
M2N191.24±1.36a177.83±2.73b227.15±0.75b
M2N294.93±3.01a162.98±2.69c210.06±4.96c
M2N384.62±0.82b202.21±3.34a236.07±2.30a
M0.60ns215.94**654.57**
N662.11**904.02**551.82**
M×N3.74*10.11**1.61ns

Table 4

Effects of different machine-transplanted and N treatments on N accumulation rate and ratio in different growth periods"

年份
Year
处理
Treatment
氮素积累速率 N accumulation rate (kg·hm-2·d-1)氮素积累比例 N accumulation ratio (%)
播种—拔节
Sowing to
elongation
拔节—抽穗
Elongation to heading
抽穗—成熟
Heading to maturity
播种—拔节
Sowing to elongation
拔节—抽穗
Elongation to heading
抽穗—成熟
Heading to maturity
2016M1N00.35±0.01d2.35±0.03d0.92±0.03a19.68±0.30d47.66±0.87c32.67±1.06a
M1N11.12±0.03b4.77±0.10b0.28±0.04c37.16±0.67b57.01±1.51b5.83±0.85c
M1N21.20±0.02a3.40±0.05c0.55±0.03b43.42±0.71a44.16±0.75d12.42±0.70b
M1N30.91±0.03c5.66±0.08a0.23±0.07c29.37±0.86c66.00±1.04a4.63±1.48c
M2N00.52±0.01d1.26±0.06d1.08±0.06a31.17±0.82c29.90±1.55d38.93±1.76a
M2N11.08±0.01b3.44±0.11b0.61±0.04b38.58±0.44b48.39±1.17b13.03±0.97c
M2N21.14±0.01a2.30±0.05c1.02±0.03a43.16±0.75a33.97±0.37c22.86±0.43b
M2N30.97±0.01c4.65±0.20a0.30±0.03c32.73±0.87c61.20±1.63a6.07±0.76d
M9.21ns196.32**86.12*190.45**125.75**96.84*
N771.49**506.80**160.60**204.77**255.15**508.37**
M×N18.15**1.11ns11.28**22.80**13.20**9.67**
2017M1N00.40±0.01d1.66±0.06d1.40±0.02a18.90±0.44d41.31±0.71c39.79±0.28a
M1N11.34±0.02b3.45±0.09b0.72±0.09c37.57±0.34b50.43±1.69b12.00±1.41c
M1N21.48±0.03a2.02±0.07c1.03±0.07b47.02±0.67a33.54±1.02d19.44±1.39b
M1N31.21±0.04c3.76±0.06a0.74±0.08c33.49±0.69c54.31±0.83a12.21±1.37c
M2N00.44±0.01c1.13±0.01d1.49±0.03a23.62±0.55d30.50±0.41c45.87±0.32a
M2N11.29±0.02a2.41±0.10b1.20±0.08b40.16±0.48b38.13±1.78b21.71±1.44b
M2N21.34±0.04a1.89±0.06c1.15±0.06b45.21±1.31a32.41±0.87c22.38±0.75b
M2N31.19±0.01b3.27±0.07a0.83±0.04c35.85±0.14c49.80±0.64a14.35±0.71c
M7.91ns113.62**27.63*28.89*61.40*41.16*
N653.02**432.46**40.13**546.40**157.13**358.70**
M×N4.99*17.03**4.75*9.36**14.64**6.01**

Table 5

Effects of different machine-transplanted methods and N treatments on N accumulation and transportation (kg·hm-2)"

年份
Year
处理
Treatment
拔节—抽穗 Elongation to heading抽穗—成熟 Heading to maturity
氮素积累量 N accumulation氮素转运量 N transportation氮素积累量 N accumulation
茎鞘
Stem-sheath
叶片
Leaf
穗部
Panicle
茎鞘
Stem-sheath
叶片
Leaf
穗部
Panicle
2016M1N022.54±0.52c24.07±1.06d20.69±0.15a9.00±0.31c27.78±1.20d81.95±1.61c
M1N151.24±0.79a50.89±3.17b14.23±0.10d39.96±1.17a75.96±1.85b129.60±1.44a
M1N233.49±1.03b31.17±0.66c16.14±0.26c29.25±1.03b63.61±0.73c119.61±1.31b
M1N351.40±0.27a66.45±2.30a17.78±0.44b30.84±0.56b85.55±2.93a127.52±1.60a
M2N011.65±0.16d9.06±1.47d22.99±0.20a3.49±0.69c18.50±0.82c72.90±2.54b
M2N127.73±0.34b46.45±2.75b16.94±0.28bc13.20±1.65b66.41±1.05a108.28±1.15a
M2N218.01±1.14c25.39±1.93c17.19±0.49b4.78±0.94c52.79±1.25b105.46±1.07a
M2N348.89±3.84a58.97±2.52a16.45±0.47c26.44±3.49a66.73±0.90a107.39±2.68a
M126.11**13.21ns7.37ns154.23**82.64*959.23**
N177.24**280.36**268.34**85.59**789.54**197.52**
M×N15.98**3.68*28.96**29.18**7.07**4.15*
2017M1N023.32±1.00c17.91±1.13c21.29±0.46a8.38±1.07d19.09±0.52d84.99±2.46c
M1N053.20±1.35a40.81±1.35b13.95±0.21c47.37±0.80a64.16±1.41b141.16±1.78a
M1N122.08±2.14c21.12±2.46c16.91±0.18b21.15±1.95c58.39±1.35c121.66±0.28b
M1N244.22±1.98b56.59±2.95a15.74±0.79d27.28±1.31b81.93±3.16a139.59±0.02a
M1N315.26±0.91c7.62±1.11d24.52±0.71a0.99±0.67d12.18±0.47c74.12±1.63c
M2N021.46±1.07b35.49±2.91b16.66±0.59b9.55±1.60b58.88±0.97b117.76±1.49a
M2N116.73±0.52c25.97±1.61c15.56±0.11b5.04±0.35c58.42±1.74b110.54±4.05b
M2N235.59±1.22a50.77±0.62a15.44±0.30b19.48±1.67a65.02±1.00a118.36±2.45a
M270.63**15.81ns8.48ns268.98**1262.75**367.75**
N117.31**177.93**117.03**134.05**603.87**215.16**
M×N35.41**5.76*11.29**60.49**11.85**4.24*

Table 6

Effects of different machine-transplanted methods and N treatments on N transport characteristics"

年份
Year
处理
Treatment
氮素转运率
N transportation efficiency (%)
氮素转运对穗部的贡献率
Contribution rate of
N transportation
(%)
干物质生产效率
N use efficiency for biomass production
(kg·kg-1)
稻谷生产效率
N use efficiency for grain yield (kg·kg-1)
氮素收获指数
N harvest index (%)
茎鞘
Stem-sheath
叶片
Leaf
2016M1N027.98±0.75c66.64±1.04c44.91±1.30c139.03±1.01b55.33±1.55a73.21±0.39a
M1N150.08±0.81a69.39±0.71b89.47±1.50a132.92±0.26c51.46±0.51c68.72±0.40c
M1N244.89±1.08ab68.38±0.58b77.65±1.10b145.64±0.71a54.18±0.98ab69.68±0.11bc
M1N342.00±0.51b74.34±1.24a91.29±2.72a130.10±0.60c52.46±0.80bc70.02±0.37b
M2N013.36±2.71c52.54±0.46d30.26±1.32d129.50±2.29a54.07±0.52a69.81±1.19a
M2N123.01±2.74b65.23±0.68a73.50±1.97b122.54±2.90b49.17±1.28b63.89±0.17b
M2N29.69±1.74c62.29±0.73b54.60±0.82c126.96±0.23a50.15±0.57b63.62±0.44b
M2N335.79±3.16a59.85±0.77c86.67±1.76a127.23±0.25a48.49±0.23b61.06±0.04c
M441.98**262.13**171.53**202.50**58.86*629.25**
N30.67**41.48**599.12**14.82**11.31**53.50**
M×N17.87**22.91**16.72**8.85**1.24ns10.18**
2017M1N025.57±2.70c53.20±0.98d32.27±0.90c146.40±4.18a50.73±0.11a71.58±0.51a
M1N156.20±0.47a62.66±1.12c79.06±2.38a145.45±0.19a47.20±0.45c69.53±0.10b
M1N236.46±1.85b66.76±0.54b65.39±2.13b149.30±1.70a51.58±0.75a69.73±0.29b
M1N338.16±1.14b72.64±0.65a78.23±2.44a132.69±0.70b48.92±1.01b69.88±0.33b
M2N03.92±2.55d41.78±1.23d17.77±0.09c128.86±4.39ab51.85±0.29a69.05±0.74a
M2N118.14±2.70b61.41±0.06b58.17±2.38b124.22±0.51b47.52±0.45b64.89±0.44b
M2N210.36±0.70c65.68±0.92a57.46±0.98b127.83±2.49ab50.14±0.65a64.66±0.68b
M2N330.34±1.91a60.79±0.42b71.38±1.26a134.26±1.16a47.62±0.33b63.36±0.53c
M146.60**391.46**72.26*37.02*0.35ns224.07**
N55.92**212.10**392.87**1.94ns23.48**19.23**
M×N20.93**23.94**8.37**10.32**2.49ns4.66*

Table 7

Effect of different machine-transplanted methods and N treatments on N use efficiency"

年份
Year
处理
Treatment
回收利用率
N recovery efficiency (%)
农学利用率
N agronomic efficiency (kg·kg-1)
生理利用率
N physiological efficiency (kg·kg-1)
偏生产力
Partial factor productivity (kg·kg-1)
2016M1N164.03±1.91a29.40±0.78ab45.95±0.83b50.98±1.28b
M1N251.40±1.38b26.79±1.03b52.30±1.43a80.38±1.17a
M1N368.07±0.99a33.08±1.78a48.58±1.44ab77.77±1.22a
M2N159.73±1.79b25.09±2.17ab41.93±2.89a47.11±0.83b
M2N252.48±1.56c22.90±0.24b43.71±1.39a72.20±1.82a
M2N369.79±3.69a28.96±1.83a41.46±0.57a70.01±1.06a
M0.69ns13.29ns11.63ns341.82**
N67.78**10.27**1.66ns373.78**
M×N2.54ns0.01ns0.51ns2.32ns
2017M1N167.97±3.33a28.67±2.03ab42.12±1.29c48.91±1.13b
M1N248.21±2.08b25.70±1.96b53.19±1.96a77.58±1.18a
M1N369.61±1.38a32.28±1.03a46.45±2.25b74.61±1.71a
M2N162.87±1.12a26.04±0.72ab41.43±1.20b45.93±0.97b
M2N251.47±4.61b24.26±2.27b47.22±2.12a71.97±0.75a
M2N368.81±1.91a29.02±0.83a42.18±0.30ab70.19±1.32a
M0.05ns4.38ns9.62ns110.61**
N56.32**7.76*14.82**216.19**
M×N2.34ns0.20ns1.44ns0.41ns

Table 8

Effects of different machine-transplanted methods and N treatments on rice yield and its components"

年份
Year
处理
Treatment
有效穗数
Panicle
(×104 hm-2)
每穗粒数
No. of spikelet per panicle
结实率
Grain filling percentage (%)
千粒重
1000-grain weight (g)
产量
Yield
( kg·hm-2)
单穗重
Panicle weight (g)
收获指数
Harvest index
(%)
2016M1N0164.80±3.20c170.34±1.35d92.68±0.18a31.59±0.01a7647.32±191.73c4.99±0.04c61.09a
M1N1259.21±3.64a190.43±2.04b87.52±0.55c30.83±0.17c12057.53±175.03b5.14±0.06b58.72b
M1N2250.16±0.24b183.67±3.74c89.33±0.46b30.73±0.16c11665.74±182.51b5.04±0.10bc57.59b
M1N3263.95±4.42a197.27±2.65a87.88±0.36c31.25±0.10b12608.57±197.97a5.42±0.06a59.35ab
M2N0173.75±1.50b162.35±1.50c89.34±0.04a30.87±0.14a7066.64±123.93c4.48±0.04c60.45a
M2N1237.64±3.37a186.55±2.03a86.04±0.65b30.60±0.09b10830.51±272.57b4.91±0.05ab55.49b
M2N2235.83±1.80a179.36±1.84b86.82±0.31b30.53±0.20b10501.40±159.28b4.75±0.06b54.82b
M2N3240.56±0.92a191.68±1.88a86.02±0.19b30.69±0.06ab11410.96±151.36a5.06±0.05a55.09b
M110.55**34.10*78.34*571.60**272.61**756.27**104.74**
N334.08**53.39**84.00**27.84**267.08**23.22**11.89**
M×N11.86**0.31ns3.69*6.00**1.43ns1.92ns1.70ns
2017M1N0160.79±2.87b165.62±2.64c96.26±0.67a31.31±0.03a7336.30±169.64d4.99±0.10b59.36a
M1N1260.10±5.46a175.54±2.09b94.66±0.99ab29.71±0.12bc11636.94±176.42b4.94±0.10bc57.50bc
M1N2252.80±5.63a171.46±2.36b91.87±3.56b29.64±0.20c11191.95±256.75c4.73±0.21c56.25c
M1N3256.03±3.04a183.52±1.67a94.95±0.67ab30.14±0.12b12178.10±187.51a5.25±0.10a57.79ab
M2N0164.35±0.93c152.05±1.35c97.08±0.43a31.25±0.37a6889.11±145.79c4.62±0.04b58.90a
M2N1243.06±4.88ab171.69±1.68b93.85±1.01ab29.78±0.29b10794.88±111.85ab4.82±0.05ab55.25b
M2N2234.95±0.23b166.68±3.02b95.78±0.28a29.94±0.06b10527.79±198.08b4.78±0.11ab55.14b
M2N3247.44±2.61a178.14±2.46a91.78±1.51b30.09±0.21b11242.41±171.13a4.91±0.06a54.71b
M30.90*7.62ns0.04ns1.02ns52.26*4.19ns40.34*
N239.15**42.39**1.96ns23.35**233.49**4.42*11.55**
M×N3.14ns2.49ns1.99ns0.35ns0.61ns2.11ns1.65ns

Table 9

Correlation coefficient between nitrogen uptake and yield in hybrid rice (n=16)"

项目
Item
氮积累量
N accumulation
氮积累速率
N accumulation rate
拔节—抽穗氮积累量
N accumulation from
elongation to heading
抽穗—成熟氮转运量
N translocation from
heading to maturity
拔节期
Elongation
抽穗期
Heading
成熟期
Maturity
播种—拔节
Sowing to
elongation
拔节—抽穗
Elongation to
heading
抽穗—成熟
Heading to
maturity
茎鞘
Stem-
sheath
叶片
Leaf
茎鞘
Stem-
sheath
叶片
Leaf
产量 Yield0.88**0.99**0.99**0.83**0.79**-0.74**0.72**0.82**0.73**0.98**
有效穗数 Panicles0.91**0.98**0.98**0.90**0.70**-0.66**0.64**0.73**0.70**0.95**
穗粒数 No. of spikelets per panicle0.65**0.77**0.77**0.410.94**-0.93**0.78**0.89**0.66**0.85**
结实率 Grain filling percentage-0.45-0.33-0.39-0.14-0.56*0.71**-0.29-0.43-0.23-0.41
千粒重 1000-grain weight-0.57*-0.57*-0.60*-0.88**0.03-0.05-0.57*-0.15-0.25-0.46
单穗重 Panicle weight0.330.60*0.53*0.130.86**-0.72**0.60*0.82**0.65**0.68**
[1] 杨松, 贾一磊, 王进友, 罗来君, 高雯雯. 钵苗机插杂交籼稻的优势及其精确定量栽培技术研究. 大麦与谷类科学, 2019, 36(6): 16-21.
YANG S, JIA Y L, WANG J Y, LUO L J, GAO W W.Research on the advantages and precise quantitative cultivation technologies of the indica hybrid rice whose seedlings are potted and mechanically transplanted. Barley and Cereal Sciences, 2019, 36(6): 16-21. (in Chinese)
[2] CHENG S H, ZHUANG J Y, FAN Y Y, DU J H, CAO L Y.Progress in research and development on hybrid rice: A super-domesticate in China. Annals of Botany, 2007, 100: 959-966.
[3] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7): 1273-1289.
ZHANG H C, GONG J L.Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Scientia Agricultura Sinica, 2014, 47(7): 1273-1289. (in Chinese)
[4] 张洪程, 朱聪聪, 霍中洋, 许轲, 蒋晓鸿, 陈厚存, 高尚勤, 李德剑, 赵成美, 戴其根. 钵苗机插水稻产量形成优势及主要生理生态特点. 农业工程学报, 2013, 29(21): 50-59.
ZHANG H C, ZHU C C, HUO Z Y, XU K, JIANG X H, CHEN H C, GAO S Q, LI D J, ZHAO C M, DAI Q G.Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 50-59. (in Chinese)
[5] 李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国农业科学, 2017, 31(3): 265-277.
LI Y H, WANG H Y, LÜ T F, ZHANG S W, JIANG M J, HE Q L, SUN Y J, MA J.Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages. Scientia Agricultura Sinica, 2017, 31(3): 265-277. (in Chinese)
[6] 张洪程, 赵品恒, 孙菊英, 吴桂成, 徐军, 端木银熙, 戴其根, 霍中洋, 许轲, 魏海燕. 机插杂交粳稻超高产形成群体特征. 农业工程学报, 2012, 28(2): 39-44.
ZHANG H C, ZHAO P H, SUN J Y, WU G C, XU J, DUANMU Y X, DAI Q G, HUO Z Y, XU K, WEI H Y.Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 39-44. (in Chinese)
[7] 胡雅杰, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 刘国林, 陆秀军, 刘国涛, 朱嘉炜. 适宜机插株行距提高不同穗型粳稻产量. 农业工程学报, 2013, 29(14): 33-44.
HU Y J, XING Z P, GONG J L, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, LI D J, SHA A Q, ZHOU Y Y, LIU G L, LU X J, LIU G T, ZHU J W.Suitable spacing in and between rows of plants by machinery improves yield of different panicle type japonica rices. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 33-44. (in Chinese)
[8] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨.中国农业科学, 2014, 47(5): 865-879.
HU Y J, XING Z P, GONG J L, LIU G T, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W, SHA A Q, ZHOU Y Y, LUO X C, LIU G L.Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Scientia Agricultura Sinica, 2014, 47(5): 865-879. (in Chinese)
[9] 吴文革, 张健美, 周永进, 陈刚, 许有尊, 李胜群, 严文学, 高尚勤. 江淮水稻钵苗机插生育特性与高产栽培关键技术研究. 中国稻米, 2015, 21(4): 118-124.
WU W G, ZHANG J M, ZHOU Y J, CHEN G, XU Y Z, LI S Q, YAN W X, GAO S Q.Study on growth and development characteristics and high-yielding cultivation techniques of rice with nutrition bowl mechanical transplanting in Jianghuai area. China Rice, 2015, 21(4): 118-124. (in Chinese)
[10] 张军, 王兴龙, 石广跃, 米长生, 郭保卫, 李必忠, 方书亮, 陆海空, 刘忠红, 张永进, 庚跃东. 不同机栽方式下杂交稻产量及其形成特征比较. 农业工程学报, 2015, 31(10): 84-91.
ZHANG J, WANG X L, SHI G Y, MI C S, GUO B W, LI B Z, FANG S L, LU H K, LIU Z H, ZHANG Y J, GENG Y D.Yield and its formation of hybrid rice under different mechanical transplanted methods. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 84-91. (in Chinese)
[11] 胡雅杰, 曹伟伟, 钱海军, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 高辉, 沙安勤, 周有炎, 刘国林. 钵苗机插密度对不同穗型水稻品种产量、株型和抗倒伏能力的影响. 作物学报, 2015, 41(5): 743-757.
HU Y J, CAO W W, QIAN H J, XING Z P, ZHANG H C, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W, GAO H, SHA A Q, ZHOU Y Y, LIU G L.Effect of planting density of mechanically transplanted pot seedlings on yield, plant type and lodging resistance in rice with different panicle types. Acta Agronomica Sinica, 2015, 41(5): 743-757. (in Chinese)
[12] ZHANG M, YAO Y L, TIAN Y H, CENG K, ZHAO M, ZHAO M, YIN B.Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crops Research, 2018, 227: 102-109.
[13] 吴文革, 张四海, 赵决建, 吴桂成, 李泽福, 夏加发. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响. 植物营养与肥料学报, 2007, 13(5): 757-764.
WU W G, ZHANG S H, ZHAO J J, WU G C, LI Z F, XIA J F.Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies. Plant Nutrition and Fertilizer Science, 2007, 13(5): 757-764. (in Chinese)
[14] AMINUDDIN B Y, SHARMA M L, WILLETT I R.Agricultural impacts on groundwater quality//Proceedings of an International Workshop. Kota Bharu, Kelantan, Malaysia, 1994.
[15] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43(5): 730-740.
WEI H Y, LI H L, CHENG J Q, ZHANG H C, DAI Q G, HUO Z Y, XU K, GUO B W, HU Y J, CUI P Y.Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle. Acta Agronomica Sinica, 2017, 43(5): 730-740. (in Chinese)
[16] DENG F, WANG L, REN W J, MEI X F.Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Research, 2014, 169: 30-38.
[17] 陈贤友, 吴良欢, 李金先, 应金耀. 新型控释肥对水稻产量与氮肥利用率的影响探讨. 土壤通报, 2010, 41(1): 133-137.
CHEN X Y, WU L H, LI J X, YING J Y.Effects of new controlled release fertilizers on rice yield and nitrogen use efficiency. Chinese Journal of Soil Science, 2010, 41(1): 133-137. (in Chinese)
[18] 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(4): 808-815.
LI M, GUO X S, YE S Y, LIU F, YUAN M M, HUANG Y D.Effects of sulfur- and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice. Plant Nutrition and Fertilizer Science, 2013, 19(4): 808-815. (in Chinese)
[19] 张敬昇, 李冰, 王昌全, 罗晶, 古珺, 龙思帆, 何杰, 向毫, 尹斌. 控释掺混尿素对稻麦产量及氮素利用率的影响. 中国水稻科学, 2017, 31(3): 288-298.
ZHANG J S, LI B, WANG C Q, LUO J, GU J, LONG S F, HE J, XIANG H, YIN B.Effects of controlled release blend bulk urea on the yield and nitrogen use efficiency of wheat and rice. Chinese Journal of Rice Science, 2017, 31(3): 288-298. (in Chinese)
[20] 孙克刚, 杜君, 孙克振, 和爱玲, 张运红. 控释尿素与化肥配施对水稻产量及氮素利用率的影响. 磷肥与复肥, 2015, 30(10): 48-50.
SUN K G, DU J, SUN K Z, HE A L, ZHANG Y H.Effect of combined application controlled release urea and chemical fertilizer on yield of rice and utilization rate of nitrogen. Phosphate & Compound Fertilizer, 2015, 30(10): 48-50. (in Chinese)
[21] 王春雨, 余华清, 何艳, 郭长春, 张绍文, 杨志远, 马均. 播栽方式与施氮量对杂交籼稻氮肥利用特征及产量的影响. 中国生态农业学报, 2017, 25(12): 1792-1801.
WANG C Y, YU H Q, HE Y, GUO C C, ZHANG S W, YANG Z Y, MA J.Characteristics of nitrogen accumulation and utilization in indica hybrid rice under different planting methods and nitrogen rates. Chinese Journal of Eco-Agriculture, 2017, 25(12): 1792-1801. (in Chinese)
[22] 胡雅杰, 吴培, 朱明, 邢志鹏, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 张洪程. 钵苗机插水稻氮素吸收与利用特征. 中国水稻科学, 2018, 32(3): 257-264.
HU Y J, WU P, ZHU M, XING Z P, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W, ZHANG H C.Characteristics of nitrogen uptake and utilization of mechanically-transplanted pot-tray-nursed rice seedlings. Chinese Journal of Rice Science, 2018, 32(3): 257-264. (in Chinese)
[23] 杨志长, 沈涛, 罗卓, 彭芝, 胡宇倩, 资涛, 熊廷浩, 宋海星. 低氮密植对机插双季稻产量形成和氮肥利用率的影响. 作物杂志, 2020, (2): 71-81.
YANG Z C, SHEN T, LUO Z, HU Y Q, ZI T, XIONG T H, SONG H X.Effects of low nitrogen rate combined with high planting density on yield formation and nitrogen use efficiency of machine transplanted double cropping rice. Crops, 2020, (2): 71-81. (in Chinese)
[24] 黄巧义, 唐拴虎, 张发宝, 张木, 黄旭, 黄建凤, 李苹, 付弘婷. 减氮配施控释尿素对水稻产量和氮肥利用的影响. 中国生态农业学报, 2017, 25(6): 829-838.
HUANG Q Y, TANG S H, ZHANG F B, ZHANG M, HUANG X, HUANG J F, LI P, FU H T.Effect of combined application of controlled-release urea and conventional urea under reduced N rate on yield and N utilization efficiency of rice. Chinese Journal of Eco-Agriculture, 2017, 25(6): 829-838. (in Chinese)
[25] 李玉浩, 何杰, 王昌全, 李冰, 梁靖越, 李新悦, 张敬昇, 尹斌. 控释氮肥配施尿素对土壤无机氮、微生物及水稻生长的影响. 土壤, 2018, 50(3): 469-475.
LI Y H, HE J, WANG C Q, LI B, LIANG J Y, LI X Y, ZHANG J S, YIN B.Effects of controlled release nitrogen fertilizer combined with urea on soil inorganic nitrogen, microorganism and rice growth. Soils, 2018, 50(3): 469-475. (in Chinese)
[26] 邓飞, 王丽, 任万军, 刘代银, 杨文钰. 不同生态条件下栽植方式对中籼迟熟杂交稻组合Ⅱ优498氮素积累与分配的影响. 中国农业科学, 2012, 45(20): 4310-4325.
DENG F, WANG L, REN W J, LIU D Y, YANG W Y.Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination Ⅱyou 498 under different ecological conditions. Scientia Agricultura Sinica, 2012, 45(20): 4310-4325. (in Chinese)
[27] 许轲, 周兴涛, 曹利强, 张洪程, 郭保卫, 陈厚存, 吴中华, 朱聪聪, 杨岩. 不同类型钵苗及摆栽密度对粳型超级稻氮素吸收利用与转运特征的影响. 中国农业科学, 2013, 46(23): 4876-4892.
XU K, ZHOU X T, CAO L Q, ZHANG H C, GUO B W, CHEN H C, WU Z H, ZHU C C, YANG Y.Effects of different types of bowl seedlings and densities on characteristics of nitrogen uptake, utilization and translocation of bowl transplanted japonica super rice. Scientia Agricultura Sinica, 2013, 46(23): 4876-4892. (in Chinese)
[28] 霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2012, 38(10): 1908-1919.
HUO Z Y, LI J, ZHANG H C, DAI Q G, XU K, WEI H Y, GONG J L.Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agronomica Sinica, 2012, 38(10): 1908-1919. (in Chinese)
[29] CASSMAN K G, PENG S, OLK D C, LADHA J K, REICHARDT W, DOBERMANN A, SINGH U.Opportunities for increased nitrogen- use efficiency from improved resource management in irrigated rice systems. Field Crops Research, 1998, 56(1): 7-39.
[30] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25(5): 1057-1063, 1056.
LI M, ZHANG H C, LI G Y, WEI H Y, YIN C Y, MA Q, YANG X.Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1057-1063, 1056. (in Chinese)
[31] REA R S, ISIAM M R, RAHMAN M M, MIX K.Study of nitrogen use efficiency and yield of rice influenced by deep placement of nitrogen fertilizers. SAARC Journal of Agriculture, 2019, 17(1): 93-103.
[32] MOHARANA S, GULATI J, PRADHAN S.Nutrient uptake and nitrogen use efficiency of rice genotypes under LCC-based N application during summer. Agricultural Science Digest-A Research Journal, 2019, 39(1): 59-62.
[33] 付月君, 王昌全, 李冰, 尹斌, 张敬昇. 控释氮肥与尿素配施对单季稻产量及氮肥利用率的影响. 土壤, 2016, 48(4): 648-652.
FU Y J, WANG C Q, LI B, YIN B, ZHANG J S.Effects of combined application of controlled-release nitrogen fertilizer and urea on rice (Oryza sativa L.) yield and nitrogen use efficiency. Soils, 2016, 48(4): 648-652. (in Chinese)
[34] 黄旭, 唐拴虎, 徐培智, 黄巧义, 卢钰升, 蒋瑞萍, 李苹, 付弘婷. 不同种类缓/控释肥料对水稻产量及养分利用率的影响. 广东农业科学, 2010, 37(8): 95-96, 105.
HUANG X, TANG S H, XU P Z, HUANG Q Y, LU Y S, JIANG R P, LI P, FU H T.Effects of different slow/controlled release fertilizers on rice yield and nutrient utilization. Journal of Guangdong Agricultural Sciences, 2010, 37(8): 95-96, 105. (in Chinese)
[35] 张晴雯, 杜春祥, 李晓伟, 李贵春, 王明. 控释肥条件下沿南四湖农田水稻吸氮特征. 环境科学, 2011, 32(7): 1908-1915.
ZHANG Q W, DU C X, LI X W, LI G C, WANG M.Nitrogen uptake rate and use efficiency by rice under different levels of the controlled- release N fertilizers (CRF) in the Nansi lake basin. Environmental Science, 2011, 32(7): 1908-1915. (in Chinese)
[36] 戢林, 杨欢, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻干物质生产和氮素积累特性. 草业学报, 2014, 23(6): 327-335.
JI L, YANG H, LI T X, ZHANG X Z, YU H Y.Dry matter production and nitrogen accumulation of rice genotypes with different nitrogen use efficiencies. Acta Prataculturae Sinica, 2014, 23(6): 327-335. (in Chinese)
[37] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000kg hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445.
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K.Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. (in Chinese)
[1] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
[2] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[3] HU JiJie,ZHONG Chu,HU ZhiHua,ZHANG JunHua,CAO XiaoChuang,LIU ShouKan,JIN QianYu,ZHU LianFeng. Effects of Dissolved Oxygen Concentration on Root Growth at Tillering Stage and Nitrogen Utilization Characteristics of Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536.
[4] GAO YingBo,ZHANG Hui,LIU KaiChang,ZHANG HuaBin,LI YuanFang,FU XiQiang,XUE YanFang,QIAN Xin,DAI HongCui,LI ZongXin. The Coordination of Nitrogen Optimization with Matched Variety Could Enhance Maize Grain Yield and Nitrogen Use Efficiency of Summer Maize in Saline Land [J]. Scientia Agricultura Sinica, 2020, 53(21): 4388-4398.
[5] ZHU CongHua, ZHANG YuPing, XIANG Jing, ZHANG YiKai, WU Hui, WANG YaLiang, ZHU DeFeng, CHEN HuiZhe. Effects of Side Deep Fertilization on Yield Formation and Nitrogen Utilization of Mechanized Transplanting Rice [J]. Scientia Agricultura Sinica, 2019, 52(23): 4228-4239.
[6] YANG ChenLu, LIU LanQing, WANG WeiYu, REN GuangXin, FENG YongZhong, YANG GaiHe. Effects of Straw Returning in Matching and Nitrogen Fertilizer on Crop Yields, Water and Nitrogen Utilization Under Wheat-Maize Multiple Cropping System [J]. Scientia Agricultura Sinica, 2018, 51(9): 1664-1680.
[7] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
[8] YunPeng HOU, Qian LI, LiLi KONG, YuBo QIN, Meng WANG, Lei YU, LiChun WANG, CaiXia YIN. Effects of Different Slow/Controlled Release Nitrogen Fertilizers on Spring Maize Nitrogen Uptake and Utilization, Soil Inorganic Nitrogen and Nitrogen Balance [J]. Scientia Agricultura Sinica, 2018, 51(20): 3928-3940.
[9] NianNian LI, Min SUN, ZhiQiang GAO, Juan ZHANG, HuiYu ZHANG, YanFei LIANG, QingShan YANG, ZhenPing YANG, Yan DENG. A Study on the Relationship Between Water Consumption and Nitrogen Absorption, Utilization Under Sub-Soiling During the Fallow Period Plus Mulched-Sowing in Humid and Dry Years of Dryland Wheat [J]. Scientia Agricultura Sinica, 2018, 51(18): 3455-3469.
[10] LIU Peng, WU AiLian, WANG JinSong, NAN JiangKuan, DONG ErWei, JIAO XiaoYan, PING JunAi, BAI WenBin. Nitrogen Use Efficiency and Physiological Responses of Different Sorghum Genotypes Influenced by Nitrogen Deficiency [J]. Scientia Agricultura Sinica, 2018, 51(16): 3074-3083.
[11] LI TingLiang, XIE YingHe, GAO ZhiQiang, HONG JianPing, MENG LiXia, MA HongMei, MENG HuiSheng, JIA JunXiang. Analysis on Yield Increasing and Nitrogen Efficiency Enhancing of Winter Wheat Under Film Mulching Cultivation in the Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(14): 2735-2746.
[12] LI GuangHao, LIU Juan, DONG ShuTing, LIU Peng, ZHANG JiWang, ZHAO Bin, SHI DeYang. Effects of Close Planting and Nitrogen Application Rates on Grain Yield and Nitrogen Utilization Efficiency of Different Density-Tolerance Maize Hybrids [J]. Scientia Agricultura Sinica, 2017, 50(12): 2247-2258.
[13] CHEN Er-ying, YANG Yan-bing, QIN Ling, ZHANG Hua-wen, LIU Bin, WANG Hai-lian, CHEN Gui-ling, YU Shu-ting, GUAN Yan-an. Evaluation of Nitrogen Efficient Cultivars of Foxtail Millet and Analysis of the Related Characters at Seedling Stage [J]. Scientia Agricultura Sinica, 2016, 49(17): 3287-3297.
[14] XIONG Shu-ping, WU Ke-yuan, WANG Xiao-chun, ZHANG Jie, DU Pan, WU Yi-xin, MA Xin-ming. Analysis of Root Absorption Characteristics and Nitrogen Utilization of Wheat Genotypes with Different N Efficiency [J]. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279.
[15] ZHAO Chun-bo, SONG Shu-yao, ZHAO Jing, ZHANG Xue-mei, ZHANG Yue, ZHANG Song-ting. Variation in Nitrogen Uptake and Utilization Efficiency of Different Cucumber Varieties in Northern China [J]. Scientia Agricultura Sinica, 2015, 48(8): 1569-1578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!