Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (19): 3821-3833.doi: 10.3864/j.issn.0578-1752.2015.19.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Comparison of Root Morphological and Activity of Representative Soybean Cultivars (MG III) Developed in the USA and China

GUO Xiao-hong1, WANG Xing-cai1,2, MENG Tian1, ZHANG Hui-jun1, AO Xue1, WANG Hai-ying1, XIE Fu-ti1   

  1. 1 Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866
    2 College of Agronomy, Sichuan     Agricultural University, Chengdu 611130
  • Received:2015-01-29 Online:2015-10-01 Published:2015-10-01

Abstract: 【Objective】The research was compared on the root morphological and activity of soybeans [Glycine max (L.) Merr.] developed in different years from the different breeding programs of Ohio, USA, and Liaoning, China, which were at the same latitude. The purpose of this study was to reveal the evolutionary trend of root traits, and the response to the fertilizer rate with the improvement of seed yield. 【Method】 The pot experiment was conducted in 2012 and 2013, and used a completely randomized design with three replications, and all used cultivars had the same ancestors (Williams and Amsoy). The diammonium phosphate was applied at the seedling stage (V2) with a solution condition, and had three levels (0, 150, and 300 mg·kg-1dry soil). The plants were cut at the cotyledonary node at the stages of V4, R2, R6, and R7, and the root bleeding sap weight was measured by a weight difference method with absorbent cotton suction. The plant root was scanned by an Epson Expression 10000XL, and then WinRhizo2012 software analyzed the scanning images to determine root length, root surface area, and number of root hairs, and the root activity was measured by a triphenyl tetrazolium chloride method (TTC). The root samples were dried in the oven at 105?C for 30 minutes and at 80℃ at least for 72 hours to achieve a constant weight, and the seed yield per plant was measured at the mature stage. 【Result】 The root length, root surface area, number of root hairs, root dry weight, root bleeding sap weight, and root activity of Ohio and Liaoning cultivars had the same improvement trend, and all of those were increased with the yield improvement, especially at the stage of R6 and R7, and the value of root morphological and activity was increased greatly by years. Compared with the cultivars of different regions, the root length, the improvement progress of root surface area, the number of root hairs, the root bleeding sap weight, and the root activity of Ohio cultivars was better than the Liaoning cultivars. With the increasing of fertilization rates, the root traits value of the current cultivars of Ohio and Liaoning showed very well at both the medium (150 mg·kg-1dry soil) and high (300 mg·kg-1dry soil) fertilization levels, and those of the middle cultivars of two regions were best at the medium fertilization rate. Under the same fertilizer rate, the root traits value of current cultivars was greater than the ancestor and middle cultivars. The results of correlation and path-coefficient showed that root length, root surface area, root dry weight, root bleeding sap weight, and root activity had significant positive correction with the seed yield per plant at the stages of V4, R2, R6, and R7, and that the correction between root activity and seed yield per plant was the best. 【Conclusion】During the improvement of the soybean yield of the Ohio and Liaoning cultivars, the root morphological and activity had the same improvement trend, and the root length, root surface area, root bleeding sap weight, and root activity were increased with the yield improvement, but the improvement progress of Ohio cultivars was greater than that of Liaoning cultivars. Fertilizer tolerance was enhanced in both Ohio and Liaoning cultivars, the root traits values of current cultivars of two regions showed very well at both the medium (150 mg·kg-1dry soil) and high (300 mg·kg-1dry soil) fertilization levels, and that of the middle cultivars were best at the medium fertilization rate.

Key words: soybean, released cultivar, root morphological, root bleeding sap, root activity, China, USA

[1]    Markus L, Alberto S, Peter S, Walter R. Root development of maize as observed with mini rhizotrons in Lysimeters. Crop Science, 2000, 40(6): 1665-1672.
[2]    董钻. 大豆产量生理. 北京: 中国农业出版社, 2000: 20-25.
Dong Z. Physiological of Yield in Soybean. Beijing: China Agricultural Press, 2000: 20-25. (in Chinese)
[3]    刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2000, 35(11): 1416-1419.
Liu T J, Qi C H, Tang J J. Studies on relationship between the character parameters of root and yield formation in rice. Scientia Agricultura Sinica, 2000, 35(11): 1416-1419. (in Chinese)
[4]    杨秀红, 吴宗璞, 张国栋. 大豆品种根系性状与地上部性状的相关性研究. 作物学报, 2002, 28(1): 72-75.
Yang X H, Wu Z P, Zhang G D. Correlations between characteristics of roots and those of aerial parts of soybean varieties. Acta Agronomica Sinica, 2002, 28(1): 72-75. (in Chinese)
[5]    郑伟. 水、肥、密对黑龙江省不同年代育成大豆品种特性的影响[D]. 沈阳: 沈阳农业大学, 2014.
Zheng W. Effect of water, fertilizer and planting density on characteristics of soybean cultivars released in different years in Heilongjiang[D]. Shenyang: Shenyang Agricultural University, 2014. (in Chinese)
[6]    孙苗苗, 邓宏中, 徐克章, 张治安, 李大勇, 徐仲伟, 袁野. 不同年代大豆品种根系伤流液重量变化及其与叶片光合的关系. 大豆科学, 2011, 30(5): 795-799.
Sun M M, Deng H Z, Xu K Z, Zhang Z A, Li D Y, Xu Z W, Yuan Y. Changes of root bleeding sap weight and its correlation with leaf net photosynthetic rate of soybean cultivars released in different years. Soybean Science, 2011, 30(5): 795-799. (in Chinese)
[7]    Ohwaki Y, Sugahara P. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil, 1997, 189(1): 49-55.
[8]    Costa C, Dwyer L M, Hamilton R I, Hamel C, Nantais L, Smith D. A sampling method for measurement of large root systems with scanner- based image analysis. Agronomy Journal, 2000, 92(4): 621-627.
[9]    Graham P H, Vance C P. Nitrogen fixation in perspective: An overview of research an extension needs. Field Crop Research, 2000, 65(2/3): 93-106.
[10]   金剑, 王光华, 刘晓冰, 陈雪丽, 李兴国. 不同施磷量对大豆苗期根系形态性状的影响. 大豆科学, 2006, 25(4): 360-364.
Jin J, Wang G H, Liu X B, Chen X L, Li X G. Effect of different phosphorus regimes on root morphological characteristics of soybean seedling. Soybean Science, 2006, 25(4): 360-364. (in Chinese)
[11]   王树起, 韩晓增, 乔云发, 严君, 李晓慧. 施氮对大豆根系形态和氮素吸收积累的影响. 中国生态农业学报, 2009, 17(6): 1069-1073.
Wang S Q, Han X Z, Qiao Y F, Yan J, Li X H. Root morphology and nitrogen accumulation in soybean (Glycine max L.) under different nitrogen application levels. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1069-1073. (in Chinese)
[12]   李彦生, 杜明, 刘晓冰, 刘俊杰, 金剑, 张秋英, 王光华. 氮素用量对菜用大豆生殖生长期根系及鲜荚产量的影响. 大豆科学, 2012, 31(1): 47-51.
Li Y S, Du M, Liu X B, Liu J J, Jin J, Zhang Q Y, Wang G H. Effects of different nitrogen dosage on root morphology during reproductive stages and fresh pod yield in vegetable soybean. Soybean Science, 2012, 31(1): 47-51. (in Chinese)
[13]   张含彬, 任万军, 杨文钰, 伍晓燕, 王竹, 杨继芝. 不同施氮量对套作大豆根系形态与生理特性的影响. 作物学报, 2007, 33(1): 107-112.
Zhang H B, Ren W J, Yang W Y, Wu X Y, Wang Z, Yang J Z. Effects of different nitrogen levels on morphological and physiological characteristics of relay-planting soybean root. Acta Agronomica Sinica, 2007, 33(1): 107-112. (in Chinese)
[14]   严君, 韩晓增, 丁娇, 王影. 东北黑土区大豆生长结瘤及产量对氮磷的响应. 植物营养与肥料学报, 2014, 20(2): 318-325.
Yan J, Han X Z, Ding J, Wang Y. Responses of growth nodulation and yield of soybean to different nitrogen and phosphorus fertilization management. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 318-325. (in Chinese)
[15]   Gizlice Z, Carter T E Jr, Gerig T M, Buron J W. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Science, 1994, 34(5): 1143-1151.
[16]   Cui Z L, Carter T E, Burton J W. Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. Crop Science, 2002, 40(5): 1470-1481.
[17]   熊庆娥. 植物生理实验教程. 成都: 四川科学技术出版社, 2003: 36-42.
Xiong Q E. Plant Physiology Experiment Course. Chengdu: Sichuan Science and Technology Press, 2003: 36-42. (in Chinese)
[18]   张宪政. 作物生理研究法. 北京: 中国农业出版社, 1992: 139-142.
Zhang X Z. The Research Method of Crop Physiology. Beijing: China Agriculture Press, 1992: 139-142. (in Chinese)
[19]   Vamerali T, Saccomani M, Bona S, Mosca G, Ganis A. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. Plant Soil, 2003, 255(1): 157-167.
[20]   苗果园, 高志强, 张云亭, 尹钧, 张爱良. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002, 28(4): 445-450.
Miao G Y, Gao Z Q, Zhang Y T, Yin J, Zhang A L. Effect of water and fertilizer to root system and its correlation with tops in wheat. Acta Agronomica Sinica, 2002, 28(4): 445-450. (in Chinese)
[21]   李鲁华, 陈树宾, 秦莉, 孔祥丽, 李世清. 不同土壤水分条件下春小麦品种根系功能效率的研究. 中国农业科学, 2002, 35(7): 867-871.
Li L H, Chen S B, Qin L, Kong X L, Li S Q. Study on root function efficiency of spring wheats under different moisture condition. Scientia Agricultura Sinica, 2002, 35(7): 867-871. (in Chinese)
[22]   翟丙年, 孙春梅, 王俊儒, 李生秀. 氮素亏缺对冬小麦根系生长发育的影响. 作物学报, 2003, 29(6): 913-918.
Zhai B N, Sun C M, Wang J R, Li S X. Effects of nitrogen deficiency on the growth and development of winter wheat roots. Acta Agronomica Sinica, 2003, 29(6): 913-918. (in Chinese)
[23]   张含彬, 任万军, 杨文钰. 氮肥处理下套作大豆根系建成与产量关系的研究. 中国土壤与肥料, 2007, 2: 46-49.
Zhang H B, Ren W J, Yang W Y. Relationship between root characteristics and yield formation in relay planting soybean under the nitrogen application. Soil and Fertilizer Science in China, 2007, 2: 46-49. (in Chinese)
[24]   刘莹, 盖钧镒, 吕慧能. 大豆根区逆境耐性的种质鉴定及其与根系性状的关系. 作物学报, 2005, 31(9): 1132-1137.
Liu Y, Gai J Y, Lü H N. Identification of rhizosphere abiotic stress tolerance and related root traits in soybean. Acta Agronomica Sinica, 2005, 31(9): 1132-1137. (in Chinese)
[25]   刘莹, 盖钧镒, 吕慧能. 大豆品种苗期根系性状的遗传变异及其与耐逆境胁迫的关系. 大豆科学, 2007, 26(2): 127-133.
Liu Y, Gai J Y, Lü H N. Genetic variation of root traits at seedling stage and their relationship with stress tolerance in soybean. Soybean Science, 2007, 26(2): 127-133. (in Chinese)
[26]   Hudak C M, Patterson R P. Root distribution and soil moisture depletion pattern of a drought resistant soybean plant introduction. Agronomy Journal, 1996, 88(3): 478-485.
[27]   任冬莲, 路贵和, 刘学义. 大豆成苗期抗旱性与根系生长的关系. 中国油料, 1993, 1: 37-39.
Ren D L, Lu G H, Liu X Y. Study on the relationship between tolerance to drought and growth of root of soybean in seedling stage. Chinese Journal of Oil Crop Sciences, 1993, 1: 37-39. (in Chinese)
[28]   Foolad M R. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome, 1999, 42(4): 727-734.
[29]   高瑞如, 赵瑞华, 杨学军, 杨慧玲, 黄振英. 盐分和温度对盐节木幼苗早期生长的影响. 生态学报, 2009, 29(10): 5395-5405.
Gao R R, Zhao R H, Yang X J, Yang H L, Huang Z Y. Effects of salt and temperature on early growth of Halocnermum strobilaceum (Chenopodiaceous) seedlings. Acta Ecologica Sinica, 2009, 29(10): 5395-5405. (in Chinese)
[30]   闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群. 套作遮荫条件下烯效唑对大豆壮苗机理的研究. 中国油料作物学报, 2011, 33(3): 259-264.
Yan Y H, Yang W Y, Zhang X Q, Chen X L, Chen Z Q. Improve soybean seedling growth by uniconazole under shading by corn in relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2011, 33(3): 259-264. (in Chinese)
[31]   傅金民, 董钻. 大豆根系生长及其与产量的关系. 大豆科学, 1987, 6(4): 261-279.
Fu J M, Dong Z. Studies on root growth and relationships between root and yield in soybean. Soybean Science, 1987, 6(4): 261-279. (in Chinese)
[32]   Hanway J J, Weber C R. Accumulation of N, P and K by soybean [Glycine max. (L.)Merr.] plants. Agronomy Journal, 1971, 63(3): 406-408.
[33]   汪宝卿, 慈敦伟, 张礼凤, 李伟, 徐冉. 同化物供应和内源激素信号对大豆花荚发育的调控. 大豆科学, 2010, 29(5): 878-882.
Wang B Q, Ci D W, Zhang L F, Li W, Xu R. Research progress of assimilation supply and endogenous hormones signals regulation involved in flower and pod development of soybean. Soybean Science, 2010, 29(5): 878-882. (in Chinese)
[34]   盖钧镒. 有限与无限习性夏大豆开花结荚特性的研究. 南京农学院学报, 1984, 4: 6-18.
Gai J Y. Bloom and pod set in determinate and indeterminate summer soybeans. Journal of Nanjing Agricultural College, 1984, 4: 6-18. (in Chinese)
[35]   苏黎, 张仁双, 宋书宏, 董钻, 谢甫绨, 王晓光. 不同结荚习性大豆开花结荚鼓粒进程的比较研究. 大豆科学, 1997, 16(3): 237-244.
Su L, Zhang R S, Song S H, Dong Z, Xie F T, Wang X Q. Comparative studies on flowering pod setting and seed filling of soybeans with different podding habits. Soybean Science, 1997, 16(3): 237-244. (in Chinese)
[36]   Heitholt J J, Egli D B, Leggett J E, MacKown C T. Role of assimilate and carbon-14 photosynthate partitioning in soybean reproductive abortion. Crop Science, 1986, 26(5): 999-1004.
[37]   李秀菊, 孟繁静. 大豆花荚败育期间的植物激素变化. 植物学通讯, 1999, 16(14): 464-467.
Li X J, Meng F J. Changes of plant hormones in normal and aborted reproductive organs of soybean. Chinese Bulletin of Botany, 1999, 16(14): 464-467. (in Chinese)
[38]   李辉亮, 陈建南, 朱保葛, 吕慧颖, 张敬. 热激和外源激素处理影响大豆花荚离层组织HSP70基因表达. 分子植物育种, 2004, 2(6): 21-25.
Li H L, Chen J N, Zhu B G, Lü H Y, Zhang J. Effects on expression of HSP70 gene in soybean affected by treatments of heat shock and exogenous hormones. Molecular Plant Breeding, 2004, 2(6): 21-25. (in Chinese)
[39]   沈振国, 张秀省, 王震宇, 沈康. 硼素营养对油菜花粉萌发的影响. 中国农业科学, 1994, 27(1): 51-56.
Shen Z G, Zhang X S, Wang Z Y, Shen K. On the relationship between boron nutrition and development of anther (pollen) in rapeseed plant. Scientia Agricultura Sinica, 1994, 27(1): 51-56. (in Chinese)
[40]   吴明才, 肖昌珍. 大豆钼素研究. 大豆科学, 1994, 13(3): 245-251.
Wu M C, Xiao C Z. Study on molybdenum soybean. Soybean Science, 1994, 13(3): 245-251. (in Chinese)
[41]   杨光, 张惠君, 宋书宏, 王文斌, 敖雪, 谢甫绨. 超高产大豆根系相关性状的比较研究. 大豆科学, 2013, 32(2): 176-181.
Yang G, Zhang H J, Song S H, Wang W B, Ao X, Xie F T. Comparison on some root related traits of super-high-yield soybean. Soybean Science, 2013, 32(2): 176-181. (in Chinese)
[42]   田佩占. 大豆品种根系的生态类型研究. 作物学报, 1984, 10(3): 173-177.
Tian P Z. Ecotypes of root system in soybean cultivars. Acta Agronomica Sinica, 1984, 10(3): 173-177. (in Chinese)
[43]   刘莹, 张孟臣, 杨春燕. 夏大豆籽粒成熟期根叶衰老特性的研究. 大豆科学, 2010, 29(2): 244-246.
Liu Y, Zhang M C, Yang C Y. Senescence of root and leaf physiological traits during seed-filling of summer growing soybean. Soybean Science, 2010, 29(2): 244-246. (in Chinese)
[44]   Minch F R, Summeerfield R J, Neves M C. Carbon metabolism, nitrogen assimilation and seed yield of cowpea grown in an adverse temperature regime. Journal of Experimental Botany, 1980, 31(5): 1327-1347.
[45]   Boon-Long P, Egli D B, Legget J E. Leaf nitrogen and photosynthesis during reproductive growth in soybean. Crop Science, 1982, 23(4): 617-620.
[46]   刘莹, 肖付明, 张孟臣. 冀南地区不同产量类型夏大豆根系性状的研究. 大豆科学, 2009, 28(4): 665-669.
Liu Y, Xiao F M, Zhang M C. Root traits of different seed yield summer soybean in the south of Hebei province. Soybean Science, 2009, 28(4): 665-669. (in Chinese)
[47]   孙海波, 田佩占. 盆栽条件下大豆品种对肥力的反应. 大豆科学, 2006, 25(2): 192-194.
Sun H B, Tian P Z. Reaction of soybean varieties to soil fertilities under tub planting condition. Soybean Science, 2006, 25(2): 192-194. (in Chinese)
[48]   马兆惠, 车仁君, 张惠君, 王海英, 谢甫绨. 磷酸二铵施肥量和单混种植对超高产大豆根系性状的影响研究. 干旱地区农业研究, 2014, 32(2): 119-125.
Ma Z H, Che R J, Zhang H J, Wang H Y, Xie F T. Effect of different diammonium phosphate levels and population type on root traits of super-high-yield soybean cultivars. Agricultural Research in the Arid Areas, 2014, 32(2): 119-125. (in Chinese)
[49]   金剑, 刘晓冰, 王光华, 李艳华, 潘相文, Herbert S J. 大豆生殖生长期根系形态性状与产量关系研究. 大豆科学, 2004, 23(4): 253-257.
Jin J, Liu X B, Wang G H, Li Y H, Pan X W, Herbert S J. Study on relationship between root morphology during reproductive stage and yield in soybean. Soybean Science, 2004, 23(4): 253-257. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[6] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[7] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[8] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[9] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[10] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[11] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[12] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[14] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!