Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (17): 3454-3462.doi: 10.3864/j.issn.0578-1752.2015.17.012

• PLANT PROTECTION • Previous Articles     Next Articles

Current Research Status and Prospects of Genomes of Insects Important to Agriculture in China

ZHANG Chuan-xi   

  1. Institute of Insect Science, Zhejiang University, Hangzhou 310058
  • Received:2015-01-05 Online:2015-09-01 Published:2015-09-01

Abstract: Insects are the largest class of all living things with overwhelming diversity in the earth. Many of them are of agricultural importance: serious crop pests or beneficial insects. Modern entomological researches are more and more relying on information obtained from different insect genomes and transcriptomes since Drosophila melanogaster genome being sequenced in 2000. To better understand insect biology and transform our ability to manage insects that threaten our health, food supply, and economic security and to use beneficial insects that are essential to the maintenance and productivity of natural and agricultural ecosystems or provide us with silk, honey, medicine and other insect products, we need to know their genomic and transcriptomic information. Up to date, genomes of more than 50 insect species have been sequenced and analyzed around the world, and genomes of five insects of agricultural importance, including the domestic silkworm (Bombyx mori), the diamondback moth (Plutella xylostella), the oriental migratory locust (Locusta migratoria manilensis), the fig wasp (Ceratosolen solmsi) and the brown planthopper (Nilaparvata lugens), have been analyzed during the past decade in China, and genome sequencing for several agricultural insects including the whitefly (Bemisia tabaci), the oriental leafworm moth (Spodoptera litura), the rice stem borer(Chilo suppressalis), the white backed planthopper (Sogatella furcifera), the small brown planthopper (Laodelphax striatellu) and several parasite wasps, are in progress. Transcriptomes of the whiteflyand brown planthopper were reported in China in 2010, first two insect transciptomes reported in the world. Hundreds of insect transcriptomes have been reported in China since that year. Many important progresses in the functional genomics of the silkworm, the locust and the brown planthopper have been achieved, including the resequencing of 40 varieties of silkworm genomes which revealed domestication events and genes in silkworm, the uncovering of the precise mechanism of phase changes of the migratory locust, and the finding of that two insulin receptors determine alternative wing morphs in planthoppers. Data mining of insect genomes and transcriptomes, together with newly developed targeted genome editing and RNAi technologies, will lead to a revolutionary change in insect pest control and beneficial insect utilization.

Key words: agricultural insects, genome, functional genomics, prospect

[1]    Adams M D, Celniker S E, Holt R A,  Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F. The genome sequence of Drosophila melanogaster. Science, 2000, 287(5461): 2185-2195.
[2]    Holt R A, Subramanian G M, Halpern A, Sutton G G, Charlab R, Nusskern D R, Wincker P, Clark A G, Ribeiro J M C, Wides R. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 2002, 298(5591): 129-149.
[3]    Nene V, Wortman J R, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M. Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 2007, 316: 1718-1722.
[4]    Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450: 203-218.
[5]    Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004, 306(5703): 1937-1940.
[6]    The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443(7114): 931-949.
[7]    Richards S, Gibbs R A, Weinstock G M, Brown S J, Denell R, Beeman R W, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen C J. The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452: 949-955.
[8]    The Nasonia Genome Working Group. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 2010, 327(5963): 343-348.
[9]    Bonasio R, Zhang G, Ye C, Mutti N S, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, Zhang P, Huang Y, Berger S L, Reinberg D, Wang J, Liebig J. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 2010, 329(5995): 1068-1071.
[10]   Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, Zhou J, Ji L, Qiu F, Rasmussen M, Pan H, Hauser F, Krogh A, Grimmelikhuijzen C J P, Wang J, Boomsma J J. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Research, 2011, 21(8): 1339-1348.
[11]   Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera E J, Cash E, Cavanaugh A. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genetics, 2011, 7(2): e1002007.
[12]   Smith C D, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie C R, Elhaik E, Elsik C G. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5673-5678.
[13]   Smith C R, Smith C D, Robertson H M, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R. Draft genome of the red harvester ant Pogonomyrmex barbatus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5667-5672.
[14]   Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt B G, Ingram K K, Falquet L, Nipitwattanaphon M, Gotzek D. The genome of the fire ant Solenopsis invicta. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(14): 5679-5684.
[15]   Xiao J H, Yue Z, Jia L Y, Yang X H, Niu L H, Wang Z, Zhang P, Sun B F, He S M, Li Z. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 2013, 14(12): R141.
[16]   Kocher S D, Li C, Yang W, Tan H, Yi S V, Yang X, Hoekstra H E, Zhang G, Pierce N E, Yu D W. The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes. Genome Biology, 2013, 14(12): R142.
[17]   Arensburger P, Megy K, Waterhouse R M, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science, 2010, 330(6000): 86-88.
[18]   Marinotti O, Cerqueira G C, de Almeida L G P, Ferro M I T, Loreto E L D, Zaha A, Teixeira S M R, Wespiser A R, Silva A A E, Schlindwein A D. The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acid Research, 2013, 41(15): 7387-7400.
[19]   Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, Xu Y, Zhou H, Xiong C, Li S. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics, 2014, 15: 42.
[20]   Kelley J L, Peyton J T, Fiston-Lavier A S, Teets N M, Yee M C, Johnston J S, Bustamante C D, Lee R E, Denlinger D L. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications, 2014, 5: Article number 4611.
[21]   Gusev O, Suetsugu Y, Cornette R, Kawashima T, Logacheva M D, Kondrashov A S, Penin A A, Hatanaka R, Kikuta S, Shimura S. Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nature Communications, 2014, 5: Article number 4784.
[22]   International Glossina Genome Initiative. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science, 2014, 344(6182): 380-386.
[23]   Zhan S, Merlin C, Boore J L, Reppert S M. The Monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147(5): 1171-1185.
[24]   The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487: 94-98.
[25]   You M, Yue Z, He W, Yang X, Yang G, Xie M, Zhan D, Baxter S W, Vasseur L, Gurr G M. A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013, 45(2): 220-225.
[26]   Keeling C I, Yuen M M S, Liao N Y, Docking T R, Chan S K, Taylor G A, Palmquist D L, Jackman S D, Nguyen A, Li M. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biology, 2013, 14(3): R27.
[27]   The International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8(2): e1000313.
[28]   Xue J, Zhou X , Zhang C X, Yu L L, Fan H W, Wang Z, Xu H J, Xi Y, Zhu Z R , Zhou W W. Genomes of the rice-pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 2014, 15(12): 521.
[29]   Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C. The locust genome provides insight into swarm formation and long-distance flight. Nature Communications, 2014, 5: 2957.
[30]   Kirkness E F, Haas B J, Sun W, Henk R, Braig H R, Perotti M A, Clark J M, Lee S H, Robertson H M, Kennedy R C, Elhaik E. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6335-6336.
[31]   Terrapon N, Li C, Robertson H M, Ji L, Meng X H, Booth W, Chen Z S, Childers C P, Glastad K M, Gokhale K. Molecular traces of alternative social organization in a termite genome. Nature Communications, 2014, 5: 3636.
[32]   Poulsen M, Hu H F, Li C, Chen Z S, Xu L H, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler P M. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14500-14505.
[33]   Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, Donath A, Krauss V, Eisenhardt C, Hertel J, Petersen M, Mayer C, Meusemann K, Peters R S, Stadler PF, Beutel R G, Bornberg-Bauer E, McKenna D D, Misof B. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology, 2012, 22(14): 1309-1313.
[34]   Soria-Carrasco V, Gompert Z, Comeault A A, Farkas T E, Parchman T L, Johnston J S, Buerkle C A, Feder J L, Bast J, Schwander T, Egan S P, Crespi B J, Nosil P. Stick insect genomes reveal natural selection’s role in parallel speciation. Science, 2014, 344(6185): 738-742.
[35]   薛建, 程家安, 张传溪. 昆虫基因组及其大小. 昆虫学报, 2009, 52(8): 901-906.
Xue J, Cheng J A, Zhang C X. Insect genomes and their sizes. Acta Entomologica Sinica, 2009, 52(8): 901-906. (in Chinese)
[36]   Biemont C. Genome size evolution: within-species variation in genome size. Heredity, 2008, 101(4): 297-298.
[37]   Hessen D O, Daufresne M, Leinaas H P. Temperature-size relations from the cellular-genomic perspective. Biological Reviews, 2013, 88(2): 476-489.
[38]   Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 2009, 326(5951): 433-436.
[39]   Ma Z Y, Guo W, Guo X J, Wang X H, Kang L. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 3882-3887.
[40]   Yang M L, Wei Y Y, Jiang F, Wang Y L, Guo X J, He J, Kang L. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genetics, 2014, 10(2): e1004206.
[41]   Xu H J, Chen T, Ma X F, Xue J, Pan P L, Zhang X C, Cheng J A , Zhang C X. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 2013, 22(6): 635-647.
[42] Xue J, Zhang X Q, Xu H J,Fan H W, Huang H J, Ma X F, Wang C Y, Chen J G, Cheng J A, Zhang C X. Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea. Insect Biochemistry and Molecular Biology, 2013, 43(5): 433-443.
[43]   Xu H J, Xue J, Lu B, Zhang X C, Zhuo J C, He S F, Ma X F, Jiang Y Q, Fan H W, Xu J Y, Ye Y X, Pan P L, Li Q, Bao Y Y, Nijhout H F, Zhang C X. Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 2015, 519(7544): 464-467.
[44]   Wang Y, Fan H W, Huang H J, Xue J, Wu W J, Bao Y Y, Xu H J, Zhu Z R, Cheng J A, Zhang C X. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphgax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology, 2012, 42(9): 637-646.
[45]   Xi Y, Pan P L, Ye Y X, Yu B, Zhang C X. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 2014, 23(6): 695-705.
[46]   Xi Y, Pan P L, Ye Y X, Yu B, Xu H J, Zhang C X. Chitinase-like family genes in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015, 24(1): 29-40.
[47] Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 2010, 11: 400.
[48]   Xue J, Bao Y Y, Li B L, Cheng Y B, Peng Z Y, Liu H, Zhu Z R, Lou Y G, Cheng J A, Zhang C X. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS ONE, 2010, 5(12): e14233.
[49]   Robinson G E, Hackett K J, Purcell-Miramontes M, Brown S J, Evans J D, Goldsmith M R, Lawson D, Okamuro J, Robertson H, Schneider D J. Creating a buzz about insect genomes. Science, 2011, 331(6023): 1386.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[5] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[11] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[12] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[13] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[14] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[15] LI ShunGuo, LIU Fei, LIU Meng, CHENG RuHong, XIA EnJun, DIAO XianMin. Current Status and Future Prospective of Foxtail Millet Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 459-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!