Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (11): 2251-2261.doi: 10.3864/j.issn.0578-1752.2015.11.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Tissue Expression Profile and Key Target Genes Analysis of Porcine miR-192 and miR-215

WU Zheng-chang, YIN Xue-mei, SUN Li, XIA Ri-wei, HUO Yong-jiu, WU Sheng-long, BAO Wen-bin   

  1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2014-05-06 Online:2015-06-01 Published:2015-06-01

Abstract: 【Objective】The previous study made by the authors’ group had screened out two microRNAs with extremely significantly increased expression for E.coli F18 infection: miR-192 and miR-215, using Illumina Solexa high-throughput sequencing technology combined with fluorescence quantitative determination. The objective of this study is to understand the miR-192/ miR-215 expression and further screen out the key target genes of miR-192 and miR-215 regulating E.coli F18 infection, which will lay a foundation for probing into the molecular mechanisms of regulating E.coli F18 infection in weaned piglets. 【Method】Real-time PCR was used to detect the miR-192/miR-215 expression in different tissues of Meishan piglets at 35 days of age, meanwhile conservative sequence was analyzed using MEGA 5.0 software. The algorithms TargetScan was used to predict miR-192/miR-215 putative target genes, whose enrichment of Gene Ontology and Pathway was analyzed, respectively. Then the functional classification of target protein was further conducted using DAVID, finally, the intersection between predicted target genes and regulatory genes was taken for the resistance to E. coli F18 infection of weaned piglets which were screened out by the previous study. 【Result】 The results indicated that miR-192/miR-215 were highly expressed in the duodenum and jejunum tissues of Meishan piglets at 35 days of age. The mature sequences of miR-192 and miR-215 are highly conservative in vertebrates. A total of 156 target genes of miR-192/miR-215 were exactly the same, which were significant enrichment in Axon guidance pathway and in 25 GO function (P<0.05). Target proteins were divided into 12 categories according to the function, and most of the target proteins belonged to phosphoprotein with signal transduction function and DNA binding protein. Through intersection between target genes and regulatory genes (Gene Expression Omnibus, Accession number: GSE26854) for the resistance to E. coli F18 infection, five important target genes such as ALCAM【Conclusion】The results of this study revealed that miR-192 and miR-215 were two important factors of participating in maintaining the intestines function and resisting the E.coli F18 infection, DLG5 was likely to be the important target gene of miR-192 and miR-215 regulating E.coli F18 infection, and further analyses should be conducted to testify whether the DLG5 could be an effective genetic marker for the resistance to E.coli F18 infection in Chinese native pig breeds., DLG5, FRMD4B, MIPOL1 and ZFHX3 were attained. From the point of target genes function, DLG5 was an important factor for maintaining epithelial cells structural integrity.

Key words: pig, miR-192, miR-215, expression profile, target gene, E.coli F18

[1]    Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350-355.
[2]    孙伟, 唐中林, 谭林, 雷初朝, 李奎. HMGCS1基因对猪肌肉生长发育的影响及miR-18a/b对HMGCS1基因的调控. 中国农业科学, 2013, 46(12): 2543-2549.
Sun W, Tang Z L, Tan L, Lei C C, Li K. Effects of HMGCS1 gene on skeletal muscle growth and development and regulated by miR-18a/b of pig. Scientia Agricultura Sinica, 2013, 46(12): 2543-2549. (in Chinese)
[3]    Huang T H, Zhu M J, Li X Y, Zhao S H. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS ONE, 2008, 3(9): e3225.
[4]    Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, Gao X, Li X. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Molecular Biology, 2013, 14(1): 7.
[5]    Lee J S, Kim J M, Lim K S, Hong J S, Hong K C, Lee Y S. Effects of polymorphisms in the porcinemicroRNAMIR206/MIR133B cluster on muscle fiber and meat quality traits.Animal Genetics, 2013, 44(1): 101-106.
[6]    Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, Gao X, Li X. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Molecular Biology, 2013, 14(1): 7.
[7]    Loveday E K, Svinti V, Diederich S, Pasick J, Jean F. Temporal- and strain-specific hostmicroRNAmolecular signatures associated withswine-origin H1N1 and avian-origin H7N7 influenza A virus infection. Journal of Virology, 2012, 86(11): 6109-6122.
[8]    Xia B, Song H, Chen Y, Zhang X, Xia X, Sun H. Efficient inhibition of porcine reproductive and respiratory syndrome virus replication by artificial microRNAs targeting the untranslated regions. Archives of Virology, 2013, 158(1): 55-61.
[9]    Wang D, Cao L, Xu Z, Fang L, Zhong Y, Chen Q, Luo R, Chen H, Li K, Xiao S. MiR-125b reduces porcine reproductive and respiratory syndrome virus replication by negatively regulating the NF-κB pathway. PLoS ONE, 2013, 8(2): e55838.
[10]   Bao W B, Ye L, Pan Z Y, Zhu J, Du Z D, Zhu G Q, Huang X G, Wu S L. Microarray analysis of differential gene expression in sensitive and resistant pig to Escherichia coli F18. Animal Genetics, 2012, 43: 525-534.
[11]   Ye L, Su X M, Wu Z C, Zheng X R, Wang J, Zi C, Zhu G Q, Wu S L, Bao W B. Analysis of differential miRNA expression in the duodenum of Escherichia coli F18-sensitive and -resistant weaned piglets. PLoS ONE, 2012, 7(8): e43741.
[12]   Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA, 2003, 9(2): 175-179.
[13]   Pichiorri F, Suh S S, Rocci A, Luciana D L, Taccioli C, Santhanam R, Zhou W, Benson D M, Hofmainster C, Alder H, Garofalo M, Leva G D, Volinia S, Lin H J, Perrotti D, Kuehl M, Aqeilan R I, Palumbo A, Croce C M. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell, 2010, 18(4): 367-381.
[14]   Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z Y, Hood L E, Galas D J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4402-4407.
[15]   Dennis G J, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology, 2003, 4(5): P3.
[16]   罗艳, 张群, 梁宇君, 张士璀. 动物中microRNA的保守性和进化历程. 中国科学: 生命科学, 2012, 42(2): 96-106.
Luo Y, Zhang Q, Liang Y J, Zhang S C. Conservation and evolution of microRNAs in animals. Science Sinica Vitae, 2012, 42(2): 96-106. (in Chinese)
[17]   Lu J, Fu Y, Kumar S, Shen Y, Zeng K, Xu A, Carthew R, Wu C I. Adaptive evolution of newly emerged microRNA genes in Drosophila. Molecular Biology and Evolution, 2008, 25: 929-938.
[18] Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836): 494-498.
[19]   Ma F, Xu S, Liu X G, Zhang Q, Xu X F, Liu M F, Hua M M, Li N, Yao H P, Cao X T. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature Immunology, 2011, 12, Pages: 861-869.
[20]   Trakooljul N, Hicks J A, Liu H C. Identification of target genes and pathways associated with chicken microRNA miR-143. Animal Genetics, 2010, 41(4): 357-364.
[21]   Mccarthy J J, Esser K A, Andrade F H, Andrade F H. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. American Journal of Physiology Cell Physiology, 2007, 293(1): C451-C457.
[22]   Sokol N S, Ambros V. Mesodermally expressed drosophila microrna-1 is regulated by twist and is required in muscles during larval growth. Genes Development, 2005, 19(19): 2343-2354.
[23]   Esau C, Davis S, Murray S F, Yu X X, Pandey S K, Pear M, Watts L, Booten S L, Graham M, McKay R, Subramaniam A, Propp S, Lollo B A, Freier S, Bennett C F, Bhanot S, Monia B P. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 2006, 3(2): 87-98.
[24]   Kloosterman W P, Lagendijk A K, Ketting R F, Moulton J D, Plasterk R H A. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic Islet development. PLoS Biology, 2007, 5(8): 1738-1749.
[25]   Sharbati S, Friedlander M R, Sharbati J, Hoeke L, Chen W, Keller A, Stahler P F, Rajewsky N, Einspanier R. Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics,2010, 11: 275-289.
[26]   Mckenna L B, Schug J, Vourekas A, Mckenna J B, Bramswig N C, Friedman J R, Kaestner K H. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology, 2010, 139(5): 1654-1664.
[27]   Nagy B, Fekete P Z. Enterotoxigenic Escherichia coli (ETEC) in farm animal. Veterinary Research, 1999, 30: 259-284.
[28]   Vogeli P, Meijerink E, Fries R, Stricker C, Bertschinger H U. A molecular test for the detection of E. coli F18 Receptors: a breakthrough in the struggle against Oedema disease and postweaning Diarrhoea in swine. Schweiz Arch Tierheilkd, 1997, 139(11): 479-484.
[29]   Meijerink E, Neuenschwander S, Fries R, Dinter A. A DNA polymorphism influencing alpha (1,2) fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Eacherichia coli F18 adhesion. Immunogenetics, 2000, 52(1/2): 129-136.
[30]   Bao W B, Wu S L, Musa H H, Zhu G Q, Chen G H. Genetic variation at the alpha (1,2) fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. Journal of Animal Breeding and Genetics, 2008, 125: 427-430.
[31]   Stoll M, Corneliussen B, Costello C M, Waetzig G H, Mellgard B, Andreas-Koch W, Rosenstiel P, Albrecht M, Croucher P J P, Seegert D, Nikolaus S, Hampe J, Lengauer T, Pierrou S, Foelsch U R, Mathew C G, Lagerstrom-Fermer M, Schreiber S. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genetics, 2004, 36: 476-480.
[32]   Jin Z, Selaru F M, Cheng Y, Kan T, Agarwal R, Mori Y, Olaru A V, Yang J, David S, Hamilton J P, Abraham J M, Harmon J, Duncan M, Montgomery E A, Meltzer S J. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene, 2011, 30(13): 1577-1585.
[33]   Georges S A, Biery M C, Kim S Y, Schelter J M, Guo J, Chang A N, Jackson A L, Carleton M O, Linsley P S, Cleary M A, Chau B N. Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Research, 2008, 68(24): 101-105.
[34]   Cappola T P, Li M Y, He J, Ky B, Gilmore J, Qu L M, Keating B, Reilly M, Kim C E, Glessner J, Frackelton E, Hakonarson H, Syed F, Hindes A, Matkovich S J, Cresci S, Dorn G W. Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circulation: Cardiovascular Genetics, 2010, 3: 147-154.
[35]   Cheung A K L, Lung H L, Ko J M Y, Cheng Y, Stanbridge E J, Zabarovsky E R, Nicholls J M, Chua D, Tsao S W, Guan X Y, Lung M L. Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, Mirror image polydactyly 1, in nasopharyngeal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14478-14483.
[36]   Nojiri S, Joh T, Miura Y, Sakata N, Nomura T, Nakao H, Sobue S, Oharra H, Asai K, Ito M. ATBF1 enhances the suppression of STAT3 signaling by interaction with PIAS3. Biochemical and Biophysical Research Communications, 2004, 314(1): 97-103.
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[4] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[5] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[6] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[7] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[8] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[11] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[12] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[13] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[14] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[15] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!