Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (6): 1163-1175.doi: 10.3864/j.issn.0578-1752.2021.06.008

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress

HaiXia ZHENG1(),YuLin GAO2,FangMei ZHANG2,3,ChaoXia YANG1,2,Jian JIANG2,Xun ZHU2,YunHui ZHANG2(),XiangRui LI2()   

  1. 1College of Plant Protection, Shanxi Agricultural University, Taigu 030801, Shanxi
    2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    3College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan
  • Received:2020-05-28 Accepted:2020-06-29 Online:2021-03-16 Published:2021-03-25
  • Contact: YunHui ZHANG,XiangRui LI;;


【Objective】 Heat shock protein (HSP), a class of highly conserved proteins, is generally found in all the organisms, which plays an important role in response to stress resistance. In order to ensure the normal physiological activities of the organism, the expression of HSP can be generated rapidly under the adverse environmental conditions. The objective of this study is to clone heat shock protein 70 (HSP70) genes of the important quarantine pest Leptinotarsa decemlineata (Ld-hsp70s), analyze their expression characteristics under temperature stress, and to clarify the function of L. decemlineata HSP70 under temperature stress. 【Method】The cDNA sequences of HSP70 genes of L. decemlineata were obtained based on the NCBI database. The full length cDNAs encoding HSP70 genes of L. decemlineata were cloned by RT-PCR and RACE technology. The full-length sequences were spliced by DNAMAN software. The sequence characteristics of Ld-hsp70s were analyzed by bioinformatic methods. The phylogenetic tree with the homologous sequences of HSP70 from L. decemlineata and other insects was constructed using the neighbor-joining (NJ) method with MEGAX software. The expression profiles of Ld-hsp70s were analyzed by qRT-PCR. The specific primers were designed using Primer 5.0 software. 【Result】The cDNA sequences of three HSP70 genes of L. decemlineata were obtained from the NCBI database, and were named as HSP70a, HSP70b and HSP70c, respectively. Three full-length sequences were obtained by cloning and splicing, and were named as Ld-hsp70a, Ld-hsp70b and Ld-hsp70c, respectively. The GenBank accession numbers were KC544268, KC544269 and KC544270, respectively. Sequence analysis showed that complete conserved domain, three signature sequences of HSP70 family, signal sequences and motifs of subcellular location at the carboxyl (C)-terminal were found in amino acid sequences of the three Ld-hsp70s. The conserved EEVD motif in the C-terminal of Ld-hsp70a and Ld-hsp70c indicated that they were cytosolic HSP70. The conserved KDEL motif in the C-terminal of Ld-hsp70b indicated that it was endoplasmic reticulum HSP70. Phylogenetic tree analysis showed Ld-hsp70a and Ld-hsp70b were clustered together with HSP70 from other insect species, while Ld-hsp70c was clustered together with the reported HSP70 from L. decemlineata. Ld-hsp70a, Ld-hsp70b and Ld-hsp70c had highest homology with Propylaea japonica Pj-hsp70, Lissorhoptrus oryzophilus Lo-hsp70, and Colaphellus bowringi Cb-hsp70, respectively. qRT-PCR results showed that the expression of all three Ld-hsp70s could be induced by high and low temperatures. No significant difference was observed in the relative expression of the three Ld-hsp70s after exposure to different temperatures for 1 h. The relative expression level of Ld-hsp70a was significantly upregulated by 2.24 and 2.41 folds after exposure to -10℃ and 44℃ for 4 h in female and male of L. decemlineata, respectively. However, no significant difference was observed in the relative expression of Ld-hsp70b and Ld-hsp70c under temperature treatments for 4 h. Whether Ld-hsp70s in female or male, no significant difference was observed of different treatment times at the same temperature. 【Conclusion】Ld-hsp70a in L. decemlineata can respond to temperature stress and may play an important role in the adaptation to adverse temperatures. Ld-hsp70b and Ld-hsp70c are not very sensitive to temperature stress, suggesting functional differentiation of the three Ld-hsp70s in response to abiotic stress.

Key words: Leptinotarsa decemlineata, temperature stress, heat shock protein 70, expression profile


Primers used in the study"

Primer name
Primer sequence (5°-3°)
Function of primers
Annealing temperature (℃)
hsp70aF1 GCCATGAACCCCAATAACAC hsp70a基因片段扩增
Amplification of hsp70a gene fragment
hsp70bF1 GATGTTGGCACAGTCATTGG hsp70b基因片段扩增
Amplification of hsp70b gene fragment
hsp70cF1 GGCATTGATCTTGGAACCAC hsp70c基因片段扩增
Amplification of hsp70c gene fragment
hsp70aF1 CAAGATCACCATCACCAACG hsp70a 3° RACE扩增 3° RACE of hsp70a 56.0
3° RACE of hsp70b
hsp70cF1 GCCAGGTAGCCATGAATC hsp70c 3° RACE扩增 3° RACE of hsp70c 52.0
Amplification of the reference gene

Fig. 1

The RT-PCR and 3′ RACE products of Ld-hsp70s"

Fig. 2

Alignment of five heat shock protein sequences of Ld-hsp70s in L. decemlineata"

Fig. 3

Deduced three-dimensional structure of Ld-hsp70s"

Fig. 4

Phylogenetic tree of amino acid sequences of HSP70s in insects"

Fig. 5

Relative expression levels of Ld-hsp70s in female (A, C, E) and male (B, D, F) adults of L. decemlineata after exposure to different temperatures at different durations Data in the figure are mean±SE and different letters above the bars indicate significant difference among different treatment temperatures for 1 h and 4 h, respectively (P<0.05) (LSD method)"

[1] CLEMENTS J, SCHOVILLE S, CLEMENTS A, AMENZIAN D, DAVIS T, SANCHEZ-SEDILLO B, BRADFIELD C, HUSETH A S, GROVES R L. Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Science Reports, 2018,8(1):13282.
[2] IZZO V M, CHEN Y H, SCHOVILLE S D, WANG C, HAWTHORNE D J. Origin of pest lineages of the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2018,111(2):868-878.
pmid: 29365170
[3] 高玉林, 徐进, 刘宁, 周倩, 丁新华, 詹家绥, 成新跃, 黄剑, 鲁宇文, 杨宇红. 我国马铃薯病虫害发生现状与防控策略. 植物保护, 2019,45(5):106-111.
GAO Y L, XU J, LIU N, ZHOU Q, DING X H, ZHAN J S, CHENG X Y, HUANG J, LU Y W, YANG Y H. Current status and management strategies for potato insect pests and diseases in China. Plant Protection, 2019,45(5):106-111. (in Chinese)
[4] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019,52(16):2800-2808.
XU J, ZHU J H, YANG Y L, TANG H, LÜ H P, FAN M S, SHI Y, DONG D F, WANG G J, WANG W X, XIONG X Y, GAO Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica, 2019,52(16):2800-2808. (in Chinese)
[5] BOITEAU G. Recruitment by flight and walking in a one-generation Colorado potato beetle (Coleoptera: Chrysomelidae) environment. Environmental Entomology, 2001,30(2):306-317.
[6] WEBER D. Colorado beetle: Pest on the move. Pesticide Outlook, 2003,14(6):256-259.
[7] LI C, LIU H, HUANG F N, CHENG D F, WANG J J, ZHANG Y H, SUN J R, GUO W C. Effect of temperature on the occurrence and distribution of Colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environmental Entomology, 2014,43(2):511-519.
[8] STRATAMAN K N, OVERHOLT W A, CUDA J P, MUKHERJEE A, DIAZ R, NETHERLAND M D, WILSON P C. Temperature- dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae). Journal of Insect Science, 2014,14:153.
doi: 10.1093/jisesa/ieu015 pmid: 25347841
[9] 洪波, 程登发, 吐尔逊, 郭文超, 陈林, 张云慧. 新疆地区马铃薯甲虫发育与温度关系的研究. 植物保护, 2009,35(6):60-63.
HONG B, CHENG D F, TUESUN, GUO W C, CHEN L, ZHANG Y H. The relationships between temperature and development of the Colorado potato beetle in Xinjiang. Plant Protection, 2009,35(6):60-63. (in Chinese)
[10] 张云慧, 张智, 何江, 吐尔逊, 程登发. 马铃薯甲虫自然种群抗寒能力测定. 植物保护, 2012,38(5):64-67.
ZHANG Y H, ZHANG Z, HE J, TUESUN, CHENG D F. Cold hardiness of natural populations of the Colorado potato beetle, Leptinotarsa decemlineata. Plant Protection, 2012,38(5):64-67. (in Chinese)
[11] 周昭旭, 罗进仓, 吕和平, 郭文超. 温度对马铃薯甲虫生长发育的影响. 昆虫学报, 2010,53(8):926-931.
ZHOU Z X, LUO J C, LÜ H P, GUO W C. Influence of temperature on development and reproduction of experimental populations of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Acta Entomologica Sinica, 2010,53(8):926-931. (in Chinese)
[12] 李超, 程登发, 刘怀, 张云慧, 孙京瑞. 温度对马铃薯甲虫分布的影响——以新疆吐鲁番地区夏季高温对其羽化的影响为例. 中国农业科学, 2013,46(4):737-744.
LI C, CHENG D F, LIU H, ZHANG Y H, SUN J R. Effects of temperature on the distribution of the Colorado potato beetle (Leptinotarsa decemlineata)—Effect of high temperature on its emergence in Turpan, Xinjiang. Scientia Agricultura Sinica, 2013,46(4):737-744. (in Chinese)
[13] ZHAO L, JONES W A. Expression of heat shock protein genes in insect stress responses. Invertebrate Survival Journal, 2012,9:93-101.
[14] MORIMOTO R I. Cells in stress: Transcriptional activation of heat shock genes. Science, 1993,259(5100):1409-1410.
pmid: 8451637
[15] 闫硕, 熊晓菲, 褚艳娜, 李贞, 巫鹏翔, 杨清坡, 崔维娜, 徐金涛, 徐丽霞, 张青文, 刘小侠. 异色瓢虫胁迫对棉铃虫生长发育及压力蛋白基因表达的影响. 中国农业科学, 2017,50(21):4118-4128.
YAN S, XIONG X F, CHU Y N, LI Z, WU P X, YANG Q P, CUI W N, XU J T, XU L X, ZHANG Q W, LIU X X. Effects of predator-induced stress from Harmonia axyridis on the development and stress protein gene expression of Helicoverpa armigera. Scientia Agricultura Sinica, 2017,50(21):4118-4128. (in Chinese)
[16] VELAZQUEZ J M, LINDQUIST S. HSP70: Nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell, 1984,36(3):655-662.
doi: 10.1016/0092-8674(84)90345-3 pmid: 6421488
[17] KIANG J G, TSOKOS G C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology and Therapeutics, 1998,80(2):183-201.
doi: 10.1016/s0163-7258(98)00028-x pmid: 9839771
[18] MAYER M P, BUKAU B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 2005,62(6):670-684.
doi: 10.1007/s00018-004-4464-6 pmid: 15770419
[19] DAUGARRD M, ROBDE M, JAATTELA M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letter, 2007,581(19):3702-3710.
[20] YANG L H, JIANG H B, LIU Y H, DOU W, WANG J J. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite. Molecular Biology Reports, 2012,39(4):3585-3596.
pmid: 21717055
[21] HUANG L H, KANG L. Cloning and interspecific altered expression of heat shock protein genes in two leafminer species in response to thermal stress. Insect Molecular Biology, 2007,16(4):491-500.
doi: 10.1111/j.1365-2583.2007.00744.x pmid: 17651238
[22] CHEN H, XU X L, LI Y P, WU J X. Characterization of heat shock protein 90, 70 and their transcription expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Science, 2014,21(4):439-448.
pmid: 24006328
[23] JIN J, ZHAO M, WANG Y, ZHOU Z, WAN F, GUO J. Induced thermotolerance and expression of three key Hsp genes (Hsp70, Hsp21, and sHsp21) and their roles in the high temperature tolerance of Agasicles hygrophila. Frontiers in Physiology, 2020,10:1593.
doi: 10.3389/fphys.2019.01593 pmid: 31992993
[24] MAHROOF R, ZHU K Y, NEVEN L, SUBRAMANYAM B, BAI J F. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2005,141(2):247-256.
[25] UDAKA H, UEDA C, GOTO S G. Survival rate and expression of heat-shock protein 70 and frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. Journal of Insect Physiology, 2010,56(12):1889-1894.
doi: 10.1016/j.jinsphys.2010.08.008 pmid: 20713057
[26] LU K, CHEN X, LIU W T, ZHANG Z C, WANG Y, YOU K K, LI Y, ZHANG R B, ZHOU Q. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses. Pesticide Biochemistry and Physiology, 2017,142:102-110.
doi: 10.1016/j.pestbp.2017.01.011 pmid: 29107232
[27] CHANG Y W, ZHANG X X, CHEN J Y, LU M X, GONG W R, DU Y Z. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. Bulletin of Entomological Research, 2019,109(2):150-159.
doi: 10.1017/S0007485318000354 pmid: 29743123
[28] 单丹, 王利华, 张月亮, 韩阳春, 牛洪涛, 潘磊, 方继朝. 褐飞虱热激蛋白70在不同温度胁迫下的差异表达特性研究. 中国水稻科学, 2017,31(5):533-541.
SHAN D, WANG L H, ZHANG Y L, HAN Y C, NIU H T, PAN L, FANG J C. Induced expression profiles of Hsp70s in brown planthoppers, Nilaparvata lugens, under different temperatures. Chinese Journal of Rice Science, 2017,31(5):533-541. (in Chinese)
[29] 蒋健, 李祥瑞, 张云慧, 郭文超, 程登发, 郭青云. 马铃薯甲虫热激蛋白基因Ld-hsp90的克隆及温度胁迫下的表达. 植物保护学报, 2013,40(5):399-406.
JIANG J, LI X R, ZHANG Y H, GUO W C, CHENG D F, GUO Q Y. cDNA cloning of heat shock protein 90 (Ld-hsp90) in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and its expression under temperature stress. Journal of Plant Protection, 2013,40(5):399-406. (in Chinese)
[30] 魏长平, 蒋健, 李祥瑞, 张云慧, 张方梅, 程登发, 郭文超, 刘怀. 马铃薯甲虫热激蛋白基因Ld-HSP60的克隆、序列分析及温度胁迫下的表达. 昆虫学报, 2017,60(5):523-532.
WEI C P, JIANG J, LI X R, ZHANG Y H, ZHANG F M, CHENG D F, GUO W C, LIU H. Cloning and sequence analysis of heat shock protein gene Ld-HSP60 in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) and its expression under temperature stress. Acta Entomologica Sinica, 2017,60(5):523-532. (in Chinese)
[31] GUPTA R S, AITKEN K, FALAH M, SINGH B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: Implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(8):2895-2899.
[32] BOORSTEIN W R, ZIEGELHOFFER T, CRAIG E A. Molecular evolution of the HSP70 multigene family. Journal of Molecular Evolution, 1994,38(1):1-17.
pmid: 8151709
[33] GUPTA R S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Molecular Biology and Evolution, 1995,12(6):1063-1073.
doi: 10.1093/oxfordjournals.molbev.a040281 pmid: 8524040
[34] LUO S, AHOLA V, SHU C, XU C, WANG R. Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress. Gene, 2015,556(2):132-141.
doi: 10.1016/j.gene.2014.11.043 pmid: 25433328
[35] SCHMID D, BAICI A, GEHRING H, CGRISTEN P. Kinetics of molecular chaperone action. Science, 1994,263(5149):971-973.
pmid: 8310296
[36] WU S J, LIU F H, HU S M, WANG C. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochemical Journal, 2001,359(2):419-426.
[37] TANG Y C, CHANG H C, ROEBEN A, WISCHNEWSKI D, WISCHNEWSKI N, KEMER M J, HARTL F U, HAVER-HARTL M. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell, 2006,125(5):903-914.
doi: 10.1016/j.cell.2006.04.027 pmid: 16751100
[38] LINDQUIST S. The heat shock response. Annual Review of Biochemistry, 1986,55:1151-1191.
pmid: 2427013
[39] LU M X, LI H B, ZHENG Y T, SHI L, DU Y Z. Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrips, Frankliniella occidentalis. Journal of Thermal Biology, 2016,57:110-118.
doi: 10.1016/j.jtherbio.2016.03.005 pmid: 27033046
[40] 杨昌利, 孟建玉, 苏丽, 张长禹. 烟蚜热激蛋白基因MpHsp70的克隆及在UV-B胁迫下的表达分析. 昆虫学报, 2019,62(1):133-140.
YANG C L, MENG J Y, SU L, ZHANG C Y. Cloning of heat shock protein gene MpHsp70 and its expression analysis under UV-B stress in Myzus persicae (Hemiptera: Aphididae). Acta Entomologica Sinica, 2019,62(1):133-140. (in Chinese)
[41] BUKAU B, WEISSMAN J, HORWICH A. Molecular chaperones and protein quality control. Cell, 2006,125(3):443-451.
pmid: 16678092
[42] ZHU X, ZHAO X, BURKHOLDER W F, GRAGEROV A, OGATA C M, GOTTESMAN M E, HENDRICKSON W A. Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 1996,272(5268):1606-1614.
pmid: 8658133
[43] LYYTINEN A, MAPPES J, LINDSTROM L. Variation in Hsp70 levels after cold shock: Signs of evolutionary responses to thermal selection among Leptinotarsa decemlineata populations. PLoS ONE, 2012,7(2):e31446.
doi: 10.1371/journal.pone.0031446 pmid: 22319631
[44] 杨苑钊. 西藏飞蝗热激蛋白70基因的片段克隆、序列分析及表达分析[D]. 成都: 四川农业大学, 2016.
YANG Y Z. Cloning and sequence analysis and expression analysis of fragment of heat shock protein 70 gene of Locusta migratoria tibetensis Chen[D]. Chengdu: Sichuan Agricultural University, 2016. (in Chinese)
[45] 郑丹, 崔旭红, 李红亮, 蔡冲, 高永生, 商晗武. 三叶草斑潜蝇hsp70的克隆及其表达量在高低温胁迫下的变化. 植物保护学报, 2010,37(2):159-164.
ZHENG D, CUI X H, LI H L, CAI C, GAO Y S, SHANG H W. Cloning of heat shock protein gene, hsp70, in Liriomy zatrifolii and its expression under temperature stress. Journal of Plant Protection, 2010,37(2):159-164. (in Chinese)
[46] 季璐, 崔旭红, 朱敏. 短时高温胁迫对褐飞虱存活及其热激蛋白基因hsp70表达的影响. 植物保护学报, 2015,42(4):619-625.
JI L, CUI X H, ZHU M. Effects of brief heat shock on the survival and hsp70 expression of brown planthopper Nilaparvata lugens (Stal). Journal of Plant Protection, 2015,42(4):619-625. (in Chinese)
[47] XU X, GUPTA S, HU W L, MCGRATH B C, CAVENER D R. Hyperthermia induces the ER stress pathway. PLoS ONE, 2011,6(8):e23740.
pmid: 21876766
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[5] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[6] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[7] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[8] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[9] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[10] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[11] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[12] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[13] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[14] SHI Xin,LI Sha,WANG ZhiMin,FU KaiYun,FU WenJun,JIANG WeiHua. Resistance Monitoring to Thiamethoxam and Expression Analysis of Cytochrome P450 Genes in Leptinotarsa decemlineata from Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(14): 3004-3016.
[15] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
Full text



No Suggested Reading articles found!